Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\Delta=\left(m-2\right)^2\ge0\) => pt đã cho có nghiệm
Vi-et: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)
\(C=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}\)
đến đây xét delta ra min max..
Ta có \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)
=> PT luôn có 2 nghiệm x1;x2 với mọi m
Khi đó theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)
Khi đó: \(B=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}\)
\(B=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2+2}\)
\(B=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+3}=\frac{2\left(m-1\right)3}{m^2+2}=\frac{2m+1}{m^2+2}\)
=> 2B+1=\(2\cdot\frac{2m+1}{m^2+2}+1=\frac{4m+2+m^2+2}{m^2+2}=\frac{m^2+4m+4}{m^2+2}=\frac{\left(m+2\right)^2}{m^2+2}\)
Ta có (m+2)2 >=0; m2+2>0
<=> 2B+1 >=0 <=> \(B\ge\frac{-1}{2}\)
Dấu "=" xảy ra <=> m=-2
Vậy MinB=\(\frac{-1}{2}\)đạt được khi m=-2
\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2\ge0\forall m\)
=> phương trình luôn có nghiêm zới \(\forall m\)
ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}=>x^2_1+x^2_2}=m^2-2m+2\)
ta có \(A=\frac{2x_1x_2+3}{x^2_1+x^2_2+2\left(x_1x_2+1\right)}=\frac{2m+1}{m^2+2}\)
=> \(A-1=\frac{-\left(m-1\right)^2}{m^2+2}\le0\forall m\)
=>\(A\le1\)
dấu = xảy ra khi zà chỉ khi m=1
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
Áp dụng hệ thức Vi-et, ta có :
\(\hept{\begin{cases}x_1x_2=m-1\\x_1+x_2=m\end{cases}}\)
Thay vào biểu thức, ta được :
\(A=\frac{2\left(m-1\right)+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}=\frac{-\frac{1}{2}\left(m^2+2\right)+\frac{m^2}{2}+2m+2}{m^2+2}\)
\(=-\frac{1}{2}+\frac{\frac{\left(m+2\right)^2}{2}}{m^2+2}\ge\frac{-1}{2}\)
Vậy GTNN của A là \(\frac{-1}{2}\)khi m = -2
Trả lời
a) Delta phương trình đó rồi xét 2 trường hợp
b) phần à delta lên sẽ tìm được m rồi thế vào là xong
Chắc vậy không chắc cho nắm
a = 1 , b = - ( 2m + 1 ) , c = m - 3
\(\Delta=b^2-4ac\)
\(=\left[-\left(2m+1\right)\right]^2-4.1.\left(m-3\right)\)
\(=4m^2+4m+1-4m+12\)
\(=4m^2+13>0\forall m\)
Vậy: Pt (1) luôn có 2 nghiệm phân biệt với mọi m
Theo Vi-et ta có: \(P=x_1x_2=\frac{c}{a}=m-3\)
\(A=3x_1x_2-2x_1x_2\ge4\)
\(A=3P-2P\ge4\)
\(A=P=m-3\ge4\Leftrightarrow m\ge7\)
Giả sử ta định m sao cho pt \(x^2-mx+m-1=0\left(1\right)\) luôn có nghiệm.
Theo định lí Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(C=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(\Rightarrow C\left(m^2+2\right)=2m+1\Rightarrow Cm^2-2m+\left(2C+1\right)=0\left(2\right)\)
Coi phương trình (2) là phương trình ẩn m tham số C, ta có:
\(\Delta'=1^2-C.\left(2C+1\right)=-2C^2-C+1\)
Để phương trình (2) có nghiệm thì:
\(\Delta'\ge0\Rightarrow-2C^2-C+1\ge0\)
\(\Leftrightarrow\left(2C-1\right)\left(C+1\right)\le0\)
\(\Leftrightarrow-1\le C\le\dfrac{1}{2}\)
Vậy \(MinC=-1;MaxC=\dfrac{1}{2}\)
Cảm ơn bạn nhiều