Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với m= 2, ta có phương trình: x 2 + 2 x − 3 = 0
Ta có: a + b + c = 1 + 2 − 3 = 0
Theo định lý Viet, phương trình có 2 nghiệm:
x 1 = 1 ; x 2 = − 3 ⇒ S = 1 ; − 3 .
b) Chứng minh rằng phương trình luôn có nghiệm ∀ m .
Ta có: Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ; ∀ m
Vậy phương trình luôn có nghiệm ∀ m .
c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m
Ta có:
x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0
Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ; m 2 = 3 2
Vậy m= -1 hoặc m= 3/2
Giả sử pt có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-n\\x_1x_2=2m+3n-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1^2+x_2^2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\\left(x_1+x_2\right)^2-2x_1x_2=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n-1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n=-1\\m=-1\end{matrix}\right.\)
Δ=(-4)^2-4(m^2+3m)
=16-4m^2-12m
=-4(m^2+3m-4)
=-4(m+4)(m-1)
Để phươg trình có hai nghiệm thì Δ>=0
=>-4(m+4)(m-1)>=0
=>(m+4)(m-1)<=0
=>-4<=m<=1
x1^2+x2^2=6
=>(x1+x2)^2-2x1x2=6
=>4^2-2(m^2+3m)=6
=>16-2m^2-6m-6=0
=>-2m^2-6m+10=0
=>m^2+3m-5=0
=>\(m=\dfrac{-3\pm\sqrt{29}}{2}\)
\(\Delta'=4-m^2-3m\ge0\Rightarrow-4\le m\le1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m^2+3m\end{matrix}\right.\)
\(x_1^2+x_2^2=6\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow4^2-2\left(m^2+3m\right)=6\)
\(\Leftrightarrow m^2+3m-5=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{-3+\sqrt{29}}{2}>1\left(loại\right)\\m=\dfrac{-3-\sqrt{29}}{2}< -4\left(loại\right)\end{matrix}\right.\)
Vậy ko tồn tại m thỏa mãn yêu cầu đề bài
PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?
PT cuối cũng bị lỗi.
Bạn xem lại đề!
Δ=(m+1)^2-4(2m-8)
=m^2+2m+1-8m+32
=m^2-6m+33
=(m-3)^2+24>=24
=>Phương trình luôn có hai nghiệm pb
x1^2+x2^2+(x1-2)(x2-2)=11
=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11
=>(m+1)^2-(2m-8)-2(m+1)+4=11
=>m^2+2m+1-2m+8-2m-2-7=0
=>m^2-2m-8=0
=>(m-4)(m+2)=0
=>m=4 hoặc m=-2
\(\Delta'=\left(m-5\right)^2+2m-9=m^2-8m+16=\left(m-4\right)^2\ge0;\forall m\)
Pt đã cho luôn luôn có nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-5\right)\\x_1x_2=-2m+9\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2-2\left(m-5\right)x_1-2m+9=0\Rightarrow x_1^2=2\left(m-5\right)x_1+2m-9\)
Thay vào bài toán:
\(2\left(m-5\right)x_1+2m-9+2\left(m-5\right)x_2=4m^2\)
\(\Leftrightarrow2\left(m-5\right)\left(x_1+x_2\right)+2m-9=4m^2\)
\(\Leftrightarrow2\left(m-5\right).2\left(m-5\right)+2m-9=4m^2\)
\(\Leftrightarrow-38m+91=0\)
\(\Rightarrow m=\dfrac{91}{38}\)
Để phương trình có 2 nghiệm thì:
\(\Delta\ge0\)
\(m^2+10m+25-8m-24\ge0\)
\(m^2+2m+1\ge0\)
\(\left(m+1\right)^2\ge\forall m\) => Pt đã cho có 2 nghiệm với mọi giá trị m.
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=2m+6\end{matrix}\right.\)
Có:
\(x_1^2+x_2^2=35\) (đưa cái đề đàng hoàng vào.-.)
<=> \(\left(x_1+x_2\right)^2-2x_1x_2=35\)
<=> \(\left(m+5\right)^2-2.\left(2m+6\right)=35\)
<=> \(m^2+10m+25-4m-12-35=0\)
<=> \(m^2+6m-22=0\)
delta' = 32 +22 = 31 > 0
=> \(\left\{{}\begin{matrix}m_1=-3+\sqrt{31}\\m_2=-3-\sqrt{31}\end{matrix}\right.\)