K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2022

b > Để pt 1 có 2 nghiệm phân biệt 

=> \(\Delta>0\)  <=> \(3^2-4\left(m-3\right)>0\)

<=> 9 -4m +12 >0 

<=> -4m+21>0

<=> m<\(\dfrac{21}{4}\)

Vậy m<\(\dfrac{21}{4}\)  là giá trị cần tìm tm yc đề bài

5 tháng 5 2022

phần a tự giải nha bạn

 

a: Khi m=-2 thì phương trình sẽ là \(x^2-8x-9=0\)

=>(x-9)(x+1)=0

=>x=9 hoặc x=-1

b: \(\text{Δ}=\left(4m\right)^2-4\left(4m-1\right)\)

\(=16m^2-16m+4=\left(4m-2\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì 4m-2<>0

hay m<>1/2

10 tháng 5 2022

`a)` Thay `m=-2` vào ptr có:

    `x^2+4.(-2)x+4.(-2)-1=0`

`<=>x^2-8x-9=0`

Ptr có: `a-b+c=1-(-8)+(-9)=0`

 `=>x_1=-1;x_2=[-c]/a=9`

Vậy với `m=-2` thì `S={-1;9}`

_____________________________________________

`b)` Ptr có `2` nghiệm pb

`<=>\Delta' > 0`

`<=>(2m)^2-(4m-1) > 0`

`<=>4m^2-4m+1 > 0`

`<=>(2m-1)^2 > 0`

   `=>(2m-1)^2 \ne 0`

`<=>2m-1 \ne 0<=>m \ne 1/2`

Vậy ...........

23 tháng 6 2021

a) Pt có hai nghiệm trái dấu \(\Leftrightarrow ac< 0\Leftrightarrow m< 0\)

b) Pt có nghiệm khi \(\Delta\ge0\Leftrightarrow36-4m\ge0\Leftrightarrow m\le9\)

Áp dụng hệ thức viet có:

\(\left\{{}\begin{matrix}x_1+x_2=6\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

Từ (1) kết hợp với điều kiện có:\(\left\{{}\begin{matrix}x_1+x_2=6\\x_1-2x_2=m\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x_2=6-m\\x_1+x_2=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{6-m}{3}\\x_1=6-x_2=\dfrac{12+m}{3}\end{matrix}\right.\)

\(\Rightarrow x_1x_2=\dfrac{6-m}{3}.\dfrac{12+m}{3}=m\)

\(\Leftrightarrow72-15m-m^2=0\)

\(\Delta=3\sqrt{57}\)

\(\Rightarrow m=\dfrac{-15\pm3\sqrt{57}}{2}\) (thỏa mãn)

Vậy...

23 tháng 6 2021

mình cản ơn

a) Thay x=0 vào phương trình, ta được:

\(4\cdot0^2-2\cdot\left(2m+3\right)\cdot0+m+1=0\)

\(\Leftrightarrow m+1=0\)

hay m=-1

Áp dụng hệ thức Vi-et, ta có: 

\(x_1+x_2=\dfrac{2\left(2m+3\right)}{4}\)

\(\Leftrightarrow x_1=\dfrac{2\cdot\left(-2+3\right)}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)

Vậy: Khi m=-1 và nghiệm còn lại là \(x=\dfrac{1}{2}\)

Thịnh ơi, vì sao mình không dùng x1x2 để tìm m

26 tháng 4 2022

a) \(\Delta'=m^2-1\)

b) Phương trình có nghiệm kép \(\Leftrightarrow\Delta'=0\Leftrightarrow m^2-1=0\Leftrightarrow m=\pm1\)

7 tháng 5 2021

a) Đây là phương trình bậc 2 ẩn x có 

Δ = (-m)2 - 4(m-1)

   = m2-4m+4  = (m-2)2

Do (m-2)2≥0 ∀m => Δ≥0 ∀m

Vậy phương trình luôn có nghiệm với mọi m.

b) Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\left(1\right)\\x_1x_2=m-1\left(2\right)\end{matrix}\right.\)

\(x_1=2x_2\left(3\right)\)

Từ (1)(3) ta có hệ phương trình: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1=2x_2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}3x_2=m\\x_1=2x_2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x_2=\dfrac{m}{3}\\x_1=\dfrac{2m}{3}\end{matrix}\right.\)

Thay \(x_1=\dfrac{2m}{3};x_2=\dfrac{m}{3}\) vào (2) ta có:

\(\dfrac{2m}{3}.\dfrac{m}{3}=m-1\)

<=> 2m2 = 9(m - 1)

<=> 2m2 - 9m + 9 = 0

<=> (m - 3)(2m - 3) = 0

<=> \(\left[{}\begin{matrix}m-3=0\\2m-3=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}m=3\\m=\dfrac{3}{2}\end{matrix}\right.\)

Vậy tại m ∈\(\left\{3;\dfrac{3}{2}\right\}\) thì hai nghiệm của phương trình thoả mãn x1=2x2

 

7 tháng 5 2021

a) Ta có:

\(\Delta=b^2-4ac=\left(-m\right)^2-4.1.\left(m-1\right)\)

\(=m^2-4m+4=\left(m-2\right)^2\ge0\) với mọi m

Vậy phương trình đã cho luôn có nghiệm với mọi m

b) Do phương trình luôn có nghiệm với mọi m

Theo định lý Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\left(1\right)\\x_1x_2=\dfrac{c}{a}=\dfrac{m-1}{1}=m-1\left(2\right)\end{matrix}\right.\)

\(x_1=2x_2\), thay vào (1) ta có:

\(2x_2+x_2=3\Leftrightarrow3x_2=m\Leftrightarrow x_2=\dfrac{m}{3}\)

\(\Rightarrow x_1=2x_2=\dfrac{2m}{3}\)

Thay \(x_1=\dfrac{2m}{3};x_2=\dfrac{m}{3}\) vào (2) ta có:

\(\dfrac{2m}{3}.\dfrac{m}{3}=m-1\)

\(\Leftrightarrow2m^2=9m-9\)

\(\Leftrightarrow2m^2-9m+9=0\)    (*)

\(\Delta_m=\left(-9\right)^2-4.2.9=9\)

Phương trình (*) có 2 nghiệm:

\(m_1=\dfrac{-\left(-9\right)+\sqrt{9}}{2.2}=3\)

\(m_2=\dfrac{-\left(-9\right)-\sqrt{9}}{2.2}=\dfrac{3}{2}\)

Vậy \(m=3;m=\dfrac{3}{2}\) thì phương trình đã cho có hai nghiệm \(x_1;x_2\) thỏa mãn \(x_1=2x_2\)

a,\(\Delta'=\left(-m\right)^2-1.1=m^2-1\)

b,Để pt có nghiệm kép thì \(\Delta'=0\)

\(\Leftrightarrow m^2-1=0\Leftrightarrow m^2=1\Leftrightarrow m=\pm1\)

Vậy......

 

3 tháng 1 2020

Phương trình (1):

+ Vô nghiệm ⇔ Δ’ < 0 ⇔ 1 – 2m < 0 ⇔ 2m > 1 ⇔ m > Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Có nghiệm kép ⇔ Δ’ = 0 ⇔ 1 – 2m = 0 ⇔ m = Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Có hai nghiệm phân biệt ⇔ Δ’ > 0 ⇔ 1 – 2m > 0 ⇔ 2m < 1 ⇔ m < Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy: Phương trình (1) có hai nghiệm phân biệt khi m < Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9; có nghiệm kép khi m = Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9 và vô nghiệm khi m > Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

27 tháng 1 2022

a/ Xét pt :

\(x^2-2\left(m-1\right)+2m-5=0\)

\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5=m^2-4m+6=\left(m-2\right)^2+2>0\forall m\)

\(\Leftrightarrow\) pt luôn có 2 nghiệm pb với mọi m

b/ Phương trình cớ 2 nghiệm trái dấu

\(\Leftrightarrow2m-5< 0\)

\(\Leftrightarrow m< \dfrac{5}{2}\)

c/ Theo định lí Vi - et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=2m-5\end{matrix}\right.\)

\(A=x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1.x_2\)

\(=4\left(m-1\right)^2-2\left(2m-5\right)\)

\(=4m^2-8m+4-4m+10\)

\(=4m^2-12m+14=4\left(m^2-3m+\dfrac{9}{4}\right)+5=4\left(m-\dfrac{3}{2}\right)^2+5\ge5\)

\(A_{min}=5\Leftrightarrow m=\dfrac{3}{2}\)

27 tháng 1 2022

1, \(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-4m+6=\left(m-2\right)^2+2>0\)

Vậy pt luôn có 2 nghiệm pb với mọi m 

2, Vì pt có 2 nghiệm trái dấu 

\(x_1x_2=\dfrac{c}{a}=2m-5< 0\Leftrightarrow m< \dfrac{5}{2}\)

3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-2\left(2m-5\right)\)

\(=4m^2-12m+14=4m^2-2.2m.3+9+6\)

\(=\left(2m-3\right)^2+6\ge6\forall m\)

Dấu ''='' xảy ra khi m = 3/2 

Vậy với m = 3/2 thì A đạt GTNN tại 6 

31 tháng 5 2021

\(x^{2^{ }}+2\left(m-1\right)x-6m-7=0\left(1\right)\)

a) \(Dental=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-6m-7\right)\)

         \(< =>4\cdot\left(m^2-2m+1\right)+24m+28\)

         \(< =>4m^2-8m+4+24m+28\)   

          \(< =>4m^2+16m+32\)

          \(< =>\left(2m+4\right)^2+16>0\)     với mọi m

Vậy phương (1) luôn có 2 nghiệm phân biệt với mọi m

b) Theo định lí vi ét ta có:

x1+x2\(\dfrac{-2\left(m-1\right)}{1}=-2m+1\)

x1x2\(-6m-7\)

 

            

22 tháng 4 2023

quy đồng

khử mẫu

tách sao cho có tích và tổng

thay x1x2 x1+x2

kết luận

mặt xấu vl . . .oe