K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

để pt có nghiệm thì

\(\Delta'=m^2-m+2\ge0\text{ (luôn đúng)}\)

theo vi-ét ta có

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-2\end{matrix}\right.\)

\(M=\dfrac{-24}{x_1^2+x_2^2-6x_1x_2}=\dfrac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}=\dfrac{-24}{4m^2-8m+16}=\dfrac{-6}{m^2-2m+4}\)

\(\Rightarrow Mm^2-2Mm+4M=-6\)

\(\Leftrightarrow Mm^2-2Mm+4M+6=0\)

ta có \(\Delta'=M^2-4M^2-6M=-3M^2-6M\)

để pt có nghiệm thì

\(\Delta'=-3M^2-6M\ge0\Rightarrow-2\le M\le0\)

vậy MinM=-2 tại m=1(t/m)

16 tháng 6 2017

\(\Delta\)' = \(m^2-m+2\) \(\ge0\forall m\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm

theo vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-2\end{matrix}\right.\)

ta có : M = \(\dfrac{-24}{x_1^2+x_2^2-6x_1x_2}\) = \(\dfrac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}\)

= \(\dfrac{-24}{4m^2-8m+16}\) = \(\dfrac{-6}{m^2-2m+4}\) = \(\dfrac{-6}{\left(m-1\right)^2+3}\)

ta có : \(-6< 0\)\(\left(m-1\right)^2+3\ge3\forall m\)

\(\Rightarrow\) \(\dfrac{-6}{\left(m-1\right)^2+3}\) nhỏ nhất \(\Leftrightarrow\) \(\left(m-1\right)^2+3\) nhỏ nhất

\(\left(m-1\right)^2+3\ge3\forall m\) vậy giá trị nhỏ là 3

khi \(\left(m-1\right)^2=0\) \(\Leftrightarrow\) \(m-1=0\) \(\Leftrightarrow\) \(m=1\)

khi đó M = \(\dfrac{-6}{3}=-2\)

vậy giá trị nhỏ nhất của M = -2 khi m = 1

18 tháng 6 2015

a) có nghiệm => \(\Delta=16-4\left(m+1\right)=12-4m\ge0\Leftrightarrow m\le3\)

áp dụng hệ thức vi ét ta có: x1+x2=4;   x1.x2=m+1

b) \(x1^2+x2^2=10\Leftrightarrow\left(x1+x2\right)^2-2x1x2=10\Leftrightarrow16-2\left(m+1\right)=10\Leftrightarrow m=2\)(t/m đk)

c) \(x1^3+x2^3=34\Leftrightarrow\left(x1+x2\right)^3-3x1.x2\left(x1+x2\right)=34\Leftrightarrow64-12\left(m+1\right)=34\Leftrightarrow m=\frac{3}{2}\)(t/m đk)

25 tháng 2 2022

\(\Delta'=\left[-\left(m+4\right)\right]^2-1\left(m^2-8\right)=m^2+8m+16-m^2+8=8m+24\)

Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow8m+24\ge0\Leftrightarrow m\ge-3\)

Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2m+8\\x_1x_2=m^2-8\end{matrix}\right.\)

\(A=x^2_1+x^2_2-x_1-x_2\\ =\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\\ =\left(2m+8\right)^2-2\left(m^2-8\right)-\left(2m+8\right)\\ =4m^2+32m+64-2m^2+16-2m-16\\ =2m^2+30m+64\)

Amin=\(-\dfrac{97}{2}\)\(\Leftrightarrow m=-\dfrac{15}{2}\)

\(B=x^2_1+x^2_2-x_1x_2\\ =\left(x_1+x_2\right)^2-3x_1x_2\\ =\left(2m+8\right)^2-3\left(m^2-8\right)\\ =4m^2+32m+64-3m^2+24\\ =m^2+32m+88\)

Bmin=-168\(\Leftrightarrow\)m=-16

 

4 tháng 4 2023

a) Ta có :  \(\Delta"=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall m\)

=> Phương trình luôn có 2 nghiệm phân biệt

b) Hệ thức Viete : 

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-2\end{matrix}\right.\)

Khi đó \(M=\dfrac{-24}{x_1^2+x_2^2-6x_1x_2}=\dfrac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}\)

\(=\dfrac{-24}{\left(2m\right)^2-8.\left(m-2\right)}=\dfrac{-6}{m^2-2m+4+=}=\dfrac{-6}{\left(m-1\right)^2+3}\)

Do (m - 1)2 + 3 \(\ge3\forall m\)

nên \(\dfrac{6}{\left(m-1\right)^2+3}\le2\Leftrightarrow M=\dfrac{-6}{\left(m-1\right)^2+3}\ge-2\)

Vậy Mmin = -2 <=> m = 1

9 tháng 6 2020

\(\hept{\begin{cases}3x-y=2m+3\\x+2y=3m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}6x-2y=4m+6\\x+2y=3m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=m+1\\y=m\end{cases}}\)khi đó: \(^{x^2+y^2=5\Leftrightarrow2m^2+2m+1=5\Leftrightarrow2m^2+2m-4=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}}\)

a: Δ=(2m-2)^2-4(m^2-9)

=4m^2-8m+4-4m^2+36=-8m+40

Để pt có nghiệm kép thì -8m+40=0

=>m=5

=>x^2-2(5-1)x+5^2-9=0

=>x^2-8x+16=0

=>x=4

b: Để PT có 2 nghiệm thì -8m+40>=0

=>m<=5

\(M=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{2}-\left(x_1+x_2\right)\)

\(=\dfrac{\left(2m-2\right)^2-2\left(m^2-9\right)}{2}-\left(2m-2\right)\)

\(=2\left(m-1\right)^2-m^2+9-2m+2\)

=2m^2-4m+2-m^2-2m+11

=m^2-6m+13

=(m-3)^2+4>=4

Dấu = xảy ra khi m=3

2 tháng 5 2017

a/ Thay m=-1 vào phương trình (1) ta được:

\(x^2-x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy khi m=-1 thì phương trình (1) có \(S=\left\{2;-1\right\}\)

b/ Xét phương trình (1) có

\(\Delta=\left(m+2\right)^2-4.2m\)

= \(m^2-4m+4=\left(m-2\right)^2\)

Ta có: \(\left(m-2\right)^2\ge0\) với mọi m

\(\Leftrightarrow\Delta\ge0\) với mọi m

\(\Rightarrow\) Phương trình (1) có 2 nghiệm với mọi m

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1.x_2=2m\end{matrix}\right.\)

Theo đề bài ta có:

\(\left(x_1+x_2\right)^2-x_1x_2\le5\)

\(\Leftrightarrow\left(m+2\right)^2-2m\le5\)

\(\Leftrightarrow m^2+2m-1\le0\)

\(\Leftrightarrow\left(m+1-\sqrt{2}\right)\left(m+1+\sqrt{2}\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m+1-\sqrt{2}\ge0\\m+1+\sqrt{2}\le0\end{matrix}\right.\\\left\{{}\begin{matrix}m+1-\sqrt{2}\le0\\m+1+\sqrt{2}\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge-1+\sqrt{2}\\m\le-1-\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}m\le-1+\sqrt{2}\\m\ge-1-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-1+\sqrt{2}\le m\le-1-\sqrt{2}\left(ktm\right)\\-1-\sqrt{2}\le m\le-1+\sqrt{2}\left(tm\right)\end{matrix}\right.\)

vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(x_1+x_2\right)^2-x_1x_2\le5\) thì \(-1-\sqrt{2}\le m\le-1+\sqrt{2}\)