Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với m = -2 pt có dạng
\(x^2+4x-5=0\)
ta có : a + b + c = 1 + 4 - 5 = 0
nên pt có 2 nghiệm \(x=1;x=-5\)
b, delta' = m^2 - ( m^2 - 9 ) = 9 > 0
Vậy pt luôn có 2 nghiệm pb
Theo Vi et : x1 + x2 = 2m ; x1x2 = m^2 - 9
Ta có : x1^2 + x2^2(x1+x2) = 12
<=> x1^2 + 2x2^2m = 12
đề có thiếu dấu ko bạn ?
a: Thay m=-2 vào pt, ta được:
\(x^2-2\cdot\left(-2\right)\cdot x+\left(-2\right)^2-9=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-1\right)=0\)
=>x=-5 hoặc x=1
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=1-(m+2)\geq 0\Leftrightarrow m\leq -1$
Áp dụng định lý Viet:
$x_1+x_2=2$
$x_1x_2=m+2$
Khi đó:
\(\text{VT}=\sqrt{[(x_1-2)^2+mx_2][(x_2-2)^2+mx_1]}=\sqrt{[(x_1-x_1-x_2)^2+mx_2][(x_2-x_1-x_2)^2+mx_1]}\)
\(=\sqrt{(x_2^2+mx_2)(x_1^2+mx_1)}=\sqrt{x_1x_2(x_2+m)(x_1+m)}\)
\(=\sqrt{x_1x_2[x_1x_2+m(x_1+x_2)+m^2]}\)
\(=\sqrt{(m+2)[m+2+2m+m^2]}=\sqrt{(m+2)(m^2+3m+2)}\)
\(=\sqrt{(m+2)^2(m+1)}\)
Lại có:
\(\text{VP}=|x_1-x_2|\sqrt{x_1x_2}=\sqrt{(x_1-x_2)^2x_1x_2}=\sqrt{[(x_1+x_2)^2-4x_1x_2]x_1x_2}\)
\(=\sqrt{-4(m+1)(m+2)}\)
YCĐB thỏa mãn khi:
$\sqrt{(m+1)(m+2)^2}=\sqrt{-4(m+1)(m+2)}$
$\Leftrightarrow (m+1)(m+2)^2=-4(m+1)(m+2)$
$\Leftrightarrow m=-1; m=-2$ hoặc $m=-6$ (đều tm)
\(\Delta'=\left(m+1\right)^2-5\ge0\Leftrightarrow m^2+2m-4\ge0\) (1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=5\end{matrix}\right.\)
\(\dfrac{1}{\left|x_1\right|}+\dfrac{1}{\left|x_2\right|}=2\Leftrightarrow\dfrac{\left|x_1\right|+\left|x_2\right|}{\left|x_1x_2\right|}=2\)
\(\Leftrightarrow\left|x_1\right|+\left|x_2\right|=2\left|x_1x_2\right|=10\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=100\)
\(\Leftrightarrow x_1^2+x_2^2+10=100\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=90\)
\(\Leftrightarrow4\left(m+1\right)^2-10=90\)
\(\Leftrightarrow\left(m+1\right)^2=25\Rightarrow\left[{}\begin{matrix}m=4\\m=-6\end{matrix}\right.\)
Thế vào (1) kiểm tra thấy đều thỏa mãn, vậy...
dạ pt có 2 nghiệm là chỉ lớn hơn không thôi chứ thầy sao có bằng 0 ạ
a)Có ac=-1<0
=>pt luôn có hai nghiệm trái dấu
b)Do x1;x2 là hai nghiệm của pt
=> \(\left\{{}\begin{matrix}x_1^2-mx_1-1=0\\x_2^2-mx_2-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-1=mx_1\\x_2^2-1=mx_2\end{matrix}\right.\)
=>\(P=\dfrac{mx_1+x_1}{x_1}-\dfrac{mx_2+x_2}{x_2}\)\(=m+1-\left(m+1\right)=0\)
a: Thay m=3 vào pt, ta được:
\(x^2-4x-1=0\)
\(\Leftrightarrow\left(x-2\right)^2=5\)
hay \(\left[{}\begin{matrix}x=\sqrt{5}+2\\x=-\sqrt{5}+2\end{matrix}\right.\)
b: \(\text{Δ}=\left(-4\right)^2-4\left(-2m+5\right)\)
\(=16+8m-20=8m-4\)
Để phương trình có hai nghiệm thì 8m-4>=0
hay m>=1/2
Theo đề, ta có: \(\left(x_1+x_2\right)^2+3x_1x_2-3\left(x_1+x_2\right)=0\)
\(\Leftrightarrow4^2-3\cdot4+3\left(-2m+5\right)=0\)
\(\Leftrightarrow4-6m+15=0\)
=>-6m+19=0
hay m=19/6(nhận)
Làm:-.-
Ta thấy x2 -2mx +m2-m-6 =0 là phương trình bậc hai ẩn x
có : a=1, b=-2m \(\rightarrow\) b'= -m, c=m2-m-6
\(\Rightarrow\Delta'=b'^2-ac=m^2-m^2+m+6=m+6\)
Để phương trình có hai nghiệm x1, x2 phân biệt\(\Delta'>0\Leftrightarrow m+6>0\Leftrightarrow m>-6\)
Khi đó, phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-b'-\sqrt{\Delta'}}{a}=m-\sqrt{m+6}\)
\(x_2=\dfrac{-b'+\sqrt{\Delta'}}{a}=m+\sqrt{m+6}\)
mà \(\left|x_1\right|+\left|x_2\right|=8\) nên \(\left|m-\sqrt{m+6}\right|+\left|m+\sqrt{m+6}\right|=8\)
mà m>-6 nên 2m=8
\(\Leftrightarrow m=4\) (t/m)
Kl: m=4