K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi m=4 thì (1) sẽ là:

x^2-6x-7=0

=>x=7 hoặc x=-1

b: Sửa đề: 2x1+3x2=-11

x1+x2=2m-2

=>2x1+3x2=-11 và 2x1+2x2=4m-4

=>x2=-11-4m+4=-4m-7 và x1=2m-2+4m+7=6m+5

x1*x2=-2m+1

=>-24m^2-20m-42m-35+2m-1=0

=>-24m^2-60m-34=0

=>\(m=\dfrac{-15\pm\sqrt{21}}{12}\)

5 tháng 6 2021

Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\)\(\Leftrightarrow4-4\left(m-1\right)>0\)\(\Leftrightarrow2>m\)

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-1\end{matrix}\right.\)

Có \(x_1^2+x_2^2-3x_1x_2=2m^2+\left|m-3\right|\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=2m^2+\left|m-3\right|\)

\(\Leftrightarrow4-5\left(m-1\right)=2m^2+\left|m-3\right|\)

\(\Leftrightarrow2m^2+\left|m-3\right|-9+5m=0\) (1)

TH1: \(m\ge3\)

PT (1) \(\Leftrightarrow2m^2+m-3-9+5m=0\)

\(\Leftrightarrow2m^2+6m-12=0\)

Do \(m\ge3\Rightarrow\left\{{}\begin{matrix}6m-12\ge6>0\\2m^2>0\end{matrix}\right.\) 

\(\Rightarrow2m^2+6m-12>0\) 

=>Pt vô nghiệm

TH2: \(m< 3\)

PT (1)\(\Leftrightarrow2m^2-\left(m-3\right)-9+5m=0\)

\(\Leftrightarrow2m^2+4m-6=0\) \(\Leftrightarrow2m^2-2m+6m-6=0\)

\(\Leftrightarrow2m\left(m-1\right)+6\left(m-1\right)=0\)\(\Leftrightarrow\left(2m+6\right)\left(m-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\) (Thỏa)

Vậy...

NV
13 tháng 1 2022

a. Bạn tự giải

b.

\(\Delta=\left(m+2\right)^2-8m=\left(m-2\right)^2\ge0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne2\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)

Do \(x_2\) là nghiệm của pt \(\Rightarrow x_2^2-\left(m+2\right)x_2+2m=0\Rightarrow x_2^2=\left(m+2\right)x_2-2m\)

Thế vào bài toán:

\(\left(m+2\right)x_1+\left(m+2\right)x_2-2m\le3\)

\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m\le3\)

\(\Leftrightarrow\left(m+2\right)^2-2m\le3\)

\(\Leftrightarrow m^2+2m+1\le0\)

\(\Leftrightarrow\left(m+1\right)^2\le0\)

\(\Rightarrow m=-1\)

Δ=(m+1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24

=>Phương trình luôn có hai nghiệm pb

x1^2+x2^2+(x1-2)(x2-2)=11

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2-7=0

=>m^2-2m-8=0

=>(m-4)(m+2)=0

=>m=4 hoặc m=-2

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m-1)^2+2m+1=m^2+2\geq 0$

$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:

$x_1+x_2=2(m-1)$

$x_1x_2=-2m-1$

Khi đó:

$2x_1+3x_2+3x_1x_2=-11$

$\Leftrightarrow 2(x_1+x_2)+3x_1x_2+x_2=-11$

$\Leftrightarrow 4(m-1)+3(-2m-1)+x_2=-11$

$\Leftrightarrow x_2=2m-4$

$x_1=2(m-1)-x_2=2m-2-(2m-4)=2$

$-2m-1=x_1x_2=2(2m-4)$

$\Leftrightarrow -2m-1=4m-8$

$\Leftrightarrow 7=6m$

$\Leftrightarrow m=\frac{7}{6}$

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m-1)^2+2m+1=m^2+2\geq 0$

$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:

$x_1+x_2=2(m-1)$

$x_1x_2=-2m-1$

Khi đó:

$2x_1+3x_2+3x_1x_2=-11$

$\Leftrightarrow 2(x_1+x_2)+3x_1x_2+x_2=-11$

$\Leftrightarrow 4(m-1)+3(-2m-1)+x_2=-11$

$\Leftrightarrow x_2=2m-4$

$x_1=2(m-1)-x_2=2m-2-(2m-4)=2$

$-2m-1=x_1x_2=2(2m-4)$

$\Leftrightarrow -2m-1=4m-8$

$\Leftrightarrow 7=6m$

$\Leftrightarrow m=\frac{7}{6}$

Δ=(-2)^2-4(m-1)

=-4m+4+4

=-4m+8

Để phương trình có hai nghiệm phân biệt thì -4m+8>0

=>-4m>-8

=>m<2

x1^2+x2^2-3x1x2=2m^2+|m-3|

=>2m^2+|m-3|=(x1+x2)^2-5x1x2=2^2-5(m-1)=4-5m+5=-5m+9

TH1: m>=3

=>2m^2+m-3+5m-9=0

=>2m^2+6m-12=0

=>m^2+3m-6=0

=>\(m\in\varnothing\)

TH2: m<3

=>2m^2+3-m+5m-9=0

=>2m^2+4m-6=0

=>m^2+2m-3=0

=>(m+3)(m-1)=0

=>m=1 hoặc m=-3

22 tháng 8 2019

a) Với m= 2, ta có phương trình:  x 2 + 2 x − 3 = 0

Ta có:  a + b + c = 1 + 2 − 3 = 0                                                             

Theo định lý Viet, phương trình có 2 nghiệm: 

x 1 = 1 ;   x 2 = − 3 ⇒ S = 1 ;   − 3 .                                                                             

b) Chứng minh rằng phương trình luôn có nghiệm  ∀ m .

Ta có:  Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ;    ∀ m                                           

Vậy phương trình luôn có nghiệm  ∀ m .                                              

c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m                                                             

Ta có:

x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0                  

Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ;   m 2 = 3 2                                                  

Vậy m= -1 hoặc m= 3/2