K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

Phương trình  x 2  - 6x + m = 0 có hai nghiệm  x 1  và  x 2  nên theo hệ thức Vi-ét ta có:

x 1  +  x 2  =-(-6)/1 = 6

Kết hợp với điều kiện  x 1  –  x 2  =4 ta có hệ phương trình :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng hệ thức vi-ét vào phương trình  x 2  -6x + m=0 ta có:

x 1 x 2 = m/1 = m . Suy ra : m = 5.1 = 5

Vậy m =5 thì phương trình  x 2  -6x +m=0 có hai nghiệm  x 1  và  x 2  thỏa mãn điều kiện  x 1  –  x 2 =4

5 tháng 7 2021

a, x = 3 , x= -1

b, m = 3 , m = 1

13 tháng 5 2017

(x1-x2)2=16
<=>(x1+x2)2-4x1x2=16
<=>36-4m=16
<=>m=5( thõa mãn điều kiện delta dương)

NV
25 tháng 3 2022

\(\Delta=\left(4m+1\right)^2-8\left(m-4\right)=16m^2+33>0;\forall m\)

Pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4m-1\\x_1x_2=2m-8\end{matrix}\right.\)

a. Kết hợp hệ thức Viet và đề bài: \(\left\{{}\begin{matrix}x_1+x_2=-4m-1\\x_2-x_1=17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=-2m-9\\x_2=-2m+8\end{matrix}\right.\)

Thế vào \(x_1x_2=2m-8\)

\(\Rightarrow\left(-2m-9\right)\left(-2m+8\right)=2m-8\)

\(\Leftrightarrow m^2-9m+20=0\Rightarrow\left[{}\begin{matrix}m=4\\m=5\end{matrix}\right.\)

NV
25 tháng 3 2022

b.

\(A=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(A=\left(4m+1\right)^2-8\left(m-4\right)\)

\(A=16m^2+33\ge33\)

\(A_{min}=33\) khi \(m=0\)

c.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4m-1\\x_1x_2=2m-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-4m-1\\2x_1x_2=4m-16\end{matrix}\right.\)

Cộng vế với vế:

\(x_1+x_2+2x_1x_2=-17\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

14 tháng 3 2022

a, \(\Delta=m^2-4\left(-4\right)=m^2+16\)> 0 

Vậy pt luôn có 2 nghiệm pb 

b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=5\)

Thay vào ta được \(m^2-2\left(-4\right)=5\Leftrightarrow m^2+3=0\left(voli\right)\)

 

14 tháng 3 2022

Bạn ơi, mình có thể hỏi câu c được không ạ? Nếu không được thì không sao, mình cảm ơn câu trả lời của bạn ạ ^-^ chúc bạn một ngày tốt lành nhé.

NV
21 tháng 4 2021

\(\Delta=1-4\left(-m-2\right)\ge0\Leftrightarrow m\ge-\dfrac{9}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-m-2\end{matrix}\right.\)

\(x_1^2-x_1x_2-2x_2=16\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)-2x_1x_2-2x_2=16\)

\(\Leftrightarrow-x_1-2\left(-m-2\right)-2x_2=16\)

\(\Leftrightarrow x_1+2x_2=2m-12\)

\(\Rightarrow x_1+x_2+x_2=2m-12\)

\(\Leftrightarrow-1+x_2=2m-12\Rightarrow x_2=2m-11\Rightarrow x_1=-1-x_2=-2m+10\)

Lại có: \(x_1x_2=-m-2\)

\(\Rightarrow\left(-2m+10\right)\left(2m-11\right)=-m-2\)

\(\Leftrightarrow4m^2-43m+108=0\Rightarrow\left[{}\begin{matrix}m=4\\m=\dfrac{27}{4}\end{matrix}\right.\)

6 tháng 5 2016

nhung bn lam the thi hoi ngan gon nhi

a) Thay m=0 vào phương trình (1), ta được:

\(x^2-2\cdot\left(0-1\right)x+0^2-3m=0\)

\(\Leftrightarrow x^2+2x=0\)

\(\Leftrightarrow x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy: Khi m=0 thì S={0;-2}

5 tháng 5 2021

câu b á

 

22 tháng 1

\(x^2+\left(4m+1\right)x+2\left(m-4\right)=0\)

\(\Delta=\left(4m+1\right)^2-4\cdot1\cdot2\left(m-4\right)=16m^2+8m+1-8m+32=16m^2+33\ge33>0\forall m\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-\left(4m+1\right)+\sqrt{16m^2+33}}{2}\\x_2=\dfrac{-\left(4m+1\right)-\sqrt{16m^2+33}}{2}\end{matrix}\right.\) 

Mà: \(x_2-x_1=17\)

\(\Leftrightarrow\dfrac{-\left(4m+1\right)-\sqrt{16m^2+33}}{2}-\dfrac{-\left(4m+1\right)+\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow\dfrac{-\left(4m+1\right)-\sqrt{16m^2+33}+\left(4m+1\right)-\sqrt{16m^2+33}}{2}=17\) 

\(\Leftrightarrow\dfrac{-2\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow\sqrt{16m^2+33}=-17< 0\)

Vậy không có m thỏa mãn