K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2021

`a,m=1`

`=>(2x+1)/x=(2x)/(x-1)`

`<=>2x^2-x-1=2x^2`

`<=>-x-1=0`

`<=>x=-1`

`b,(2x+m)/x=(2x)/(x-1)`

`<=>2x^2=2x^2-2x+mx-m`

`<=>mx-2x=m`

`<=>x(m-2)=m`

PT có nghiệm duy nhất

`<=>m-2 ne 0<=>m ne 2`

PT vô nghiệm

`<=>m-2=0,m ne 0`

`<=>m=2`

PT có vô số nghiệm

`<=>m=2,m=2` vô lý.

ĐKXĐ: \(x\notin\left\{0;1\right\}\)

a) Thay m=1 vào phương trình, ta được:

\(\dfrac{2x+1}{x}=1+\dfrac{x+1}{x-1}\)

\(\Leftrightarrow\dfrac{2x+1}{x}=\dfrac{x-1+x+1}{x-1}\)

\(\Leftrightarrow\dfrac{2x+1}{x}=\dfrac{2x}{x-1}\)

\(\Leftrightarrow2x^2=\left(2x+1\right)\left(x-1\right)\)

\(\Leftrightarrow2x^2=2x^2-2x+x-1\)

\(\Leftrightarrow2x^2-2x^2+2x-x-1=0\)

\(\Leftrightarrow x-1=0\)

hay x=1(loại)

Vậy: Khi m=1 thì \(S=\varnothing\)

11 tháng 2 2021

ĐKXĐ: \(x\ne1;x\ne-2\)\(\Rightarrow\left(2x-m\right)\left(x+2\right)+\left(x+1\right)\left(x-1\right)=3\left(x-1\right)\left(x+2\right)\Leftrightarrow2x^2+4x-mx-2m+x^2-1=3x^2+3x-6\Leftrightarrow3x^2+4x-mx-2m-3x^2-3x=-6\) \(\Leftrightarrow x-mx=2m-6\Leftrightarrow x\left(1-m\right)=2m-6\Leftrightarrow x=\dfrac{2m-6}{1-m}\)

\(\Rightarrow\) Để pt có nghiệm \(\Leftrightarrow m\ne1\)  Vậy...

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

Lời giải:

Xét PT(1):

\(\Leftrightarrow \frac{x-2013}{2011}+1+\frac{x-2011}{2009}+1=\frac{x-2009}{2007}+1+\frac{x-2007}{2005}+1\)

\(\Leftrightarrow \frac{x-2}{2011}+\frac{x-2}{2009}=\frac{x-2}{2007}+\frac{x-2}{2005}\)

\(\Leftrightarrow (x-2)\left(\frac{1}{2011}+\frac{1}{2009}-\frac{1}{2007}-\frac{1}{2005}\right)=0\)

Dễ thấy $\frac{1}{2011}+\frac{1}{2009}-\frac{1}{2007}-\frac{1}{2005}\neq 0$ nên $x-2=0$

$\Rightarrow x=2$Xét $(2)$:\(\Leftrightarrow \frac{(x-2)(x+m)}{x-1}=0\)

Để $(1);(2)$ là 2 PT tương đương thì $(2)$ chỉ có nghiệm $x=2$

Điều này xảy ra khi $x+m=x-1$ hoặc $x+m=x-2\Leftrightarrow m=-1$ hoặc $m=-2$

1 tháng 3 2021

Akai Haruma Giáo viên, mk không hiểu tại sao lại có m=-1, m=-2 vào nữa, mk tưởng với mọi m chứ??

 

a: Khi m=1 thì pt sẽ là: x+x-3=6x-6

=>6x-6=2x-3

=>4x=3

=>x=3/4

b: m^2x+m(x-3)=6(x-1)

=>x(m^2+m-6)=-6+3m=3m-6

=>x(m+3)(m-2)=3(m-2)

Để (1) có nghiệm duy nhất thì (m+3)(m-2)<>0

=>m<>-3 và m<>2

=>x=3/(m+3)

\(A=\dfrac{\left(\dfrac{3}{m+3}\right)^2+\dfrac{6}{m+3}+3}{\left(\dfrac{3}{m+3}\right)^2+2}\)

\(=\dfrac{9+6m+18+3m^2+18m+27}{\left(m+3\right)^2}:\dfrac{9+2m^2+12m+18}{\left(m+3\right)^2}\)

\(=\dfrac{3m^2+24m+54}{2m^2+12m+27}>=\dfrac{1}{2}\)

Dấu = xảy ra khi 6m^2+48m+108=2m^2+12m+27

=>4m^2+36m+81=0

=>m=-9/2

28 tháng 3 2022

a) khi m = 1 ta có pt
x + 1.(x-3) = 6.(x-1) 
=> x + x - 3 = 6x - 6
=> -4x = -3
=> x = 3/4
vậy với m=1 pt có no x =3/4

18 tháng 4 2022

-ĐKXĐ: \(x\ne5\)

\(\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=2m\)

\(\Leftrightarrow\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=\dfrac{2m\left(x-5\right)}{x-5}\)

\(\Rightarrow m^2x+x+1-2m^2=2mx-10m\)

\(\Leftrightarrow m^2x+x-2mx=2m^2-10m-1\)

\(\Leftrightarrow x\left(m^2-2m+1\right)=2m^2-10m-1\)

\(\Leftrightarrow x=\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\)

-Để phương trình có nghiệm duy nhất, đạt GT duy nhất thì \(\left(m-1\right)^2\ne0\Leftrightarrow m\ne1\)

18 tháng 4 2022

-Sửa lại:

-ĐKXĐ: \(x\ne5\)

\(\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=2m\)

\(\Leftrightarrow\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=\dfrac{2m\left(x-5\right)}{x-5}\)

\(\Rightarrow m^2x+x+1-2m^2=2mx-10m\)

\(\Leftrightarrow m^2x+x-2mx=2m^2-10m-1\)

\(\Leftrightarrow x\left(m^2-2m+1\right)=2m^2-10m-1\)

\(\Leftrightarrow x=\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\)

-Để phương trình có nghiệm duy nhất, đạt GT duy nhất thì \(\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\ne5\Leftrightarrow\dfrac{2m^2-10m-1}{m^2-2m+1}\ne5\Leftrightarrow\dfrac{2m^2-10m-1}{m^2-2m+1}\ne\dfrac{5m^2-10m+5}{m^2-2m+1}\Leftrightarrow2m^2-10m-1\ne5m^2-10m+5\Leftrightarrow3m^2+6\ne0\)(luôn đúng)

-Vậy với \(m\in R\) thì pt có nghiệm duy nhất.

9 tháng 1 2021

undefined

Lại còn ký tên nữa,sợ bị bản quyền ah=))