K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 11 2019

ĐKXĐ: ...

\(3x\left(3x-\sqrt{8x^2+x+5}\right)-2\left(\sqrt{x^2-x-1}-2\right)=0\)

\(\Leftrightarrow\frac{3x\left(x^2-x-5\right)}{3x+\sqrt{8x^2+x+5}}-\frac{2\left(x^2-x-5\right)}{\sqrt{x^2-x-5}+2}=0\)

\(\Leftrightarrow\left(x^2-x-5\right)\left(\frac{3x}{3x+\sqrt{8x^2+x+5}}-\frac{2}{\sqrt{x^2-x-5}+2}\right)=0\)

May mắn là người ta chỉ bắt tìm 1 nghiệm nên cái ngoặc kia ta khỏi quan tâm, nếu không thì cách liên hợp này không ổn đâu

\(x^2-x-5=0\Rightarrow x=\frac{1+\sqrt{21}}{2}\) \(\Rightarrow a=1;b=21;c=2\)

26 tháng 11 2019

Nguyễn Việt Lâm rep ib mk vss

AH
Akai Haruma
Giáo viên
10 tháng 12 2021

1/ ĐKXĐ: $4x^2-4x-11\geq 0$

PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$

$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)

$\Leftrightarrow 2a^2-a-6=0$

$\Leftrightarrow (a-2)(2a+3)=0$

Vì $a\geq 0$ nên $a=2$

$\Leftrightarrow \sqrt{4x^2-4x-11}=2$

$\Leftrightarrow 4x^2-4x-11=4$

$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$

$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)

AH
Akai Haruma
Giáo viên
10 tháng 12 2021

2/ ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$

$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)

$\Leftrightarrow a^2-3a-14=0$

$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)

$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$

$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$

7 tháng 8 2021

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

7 tháng 8 2021

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

3 tháng 1 2021

Đặt \(\sqrt{\dfrac{4x+9}{28}}=y+\dfrac{1}{2}\left(y\ge-\dfrac{1}{2}\right)\).

Ta có hpt:

\(\left\{{}\begin{matrix}14y^2+14y=2x+1\\14x^2+14x=2y+1\end{matrix}\right.\)

\(\Rightarrow14\left(x^2-y^2\right)+16\left(x-y\right)=0\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+y=\dfrac{-8}{7}\end{matrix}\right.\).

Đến đây thế vào là được.

 

NV
9 tháng 1 2023

ĐKXĐ: \(x\ge1\)

\(x-1+\sqrt{5+\sqrt{x-1}}=5\)

Đặt \(\sqrt{x-1}=t\ge0\)

\(\Rightarrow t^2+\sqrt{t+5}=5\)

Đặt \(\sqrt{t+5}=u>0\Rightarrow u^2-t=5\)

\(\Rightarrow t^2+u=u^2-t\Leftrightarrow t^2-u^2+t+u=0\)

\(\Leftrightarrow\left(t+u\right)\left(t-u+1\right)=0\)

\(\Leftrightarrow t-u+1=0\) (do \(t>0;u>0\Rightarrow t+u>0\))

\(\Leftrightarrow t+1=\sqrt{t+5}\)

\(\Leftrightarrow t^2+2t+1=t+5\Leftrightarrow t^2+t-4=0\)

\(\Rightarrow t=\dfrac{-1+\sqrt{17}}{2}\)

\(\Rightarrow x=t^2+1=\dfrac{11-\sqrt{17}}{2}\)

9 tháng 1 2023

giúp e ạ e cảm ơn

https://hoc24.vn/cau-hoi/cho-chop-sabcd-day-hinh-binh-hanh-m-la-trung-diem-sc-mat-anpha-chua-am-cat-sdsb-tai-ef-tinh-sdse.7474367749811

NV
9 tháng 1 2023

Pt này vô nghiệm, em kiểm tra lại đề bài

9 tháng 1 2023

Anh ơi! Đề đúng ạ anh! Anh cho em xin cách giải ạ 

NV
21 tháng 12 2020

ĐKXĐ: \(0\le x\le4\) ;\(x\ne2\)

\(\Leftrightarrow\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{4-x}\right)}{x-2}=2x-3\)

\(\Leftrightarrow x+\sqrt{4x-x^2}=2x^2-7x+6\)

\(\Leftrightarrow2\left(4x-x^2\right)+\sqrt{4x-x^2}-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x-x^2}=-2\left(loại\right)\\\sqrt{4x-x^2}=\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow4x-x^2=\dfrac{9}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4+\sqrt{7}}{2}\\x=\dfrac{4-\sqrt{7}}{2}\end{matrix}\right.\) \(\Rightarrow abc\)

NV
9 tháng 1 2023

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=y\ge0\)

\(\Rightarrow4x^2+12xy=27y^2\)

\(\Leftrightarrow\left(2x-3y\right)\left(2x+9y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3y=2x\\9y=-2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x+1}=2x\left(x\ge0\right)\\9\sqrt{x+1}=-2x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}9\left(x+1\right)=4x^2\left(x\ge0\right)\\81\left(x+1\right)=4x^2\left(x\le0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{81-9\sqrt{97}}{8}\end{matrix}\right.\)

NV
13 tháng 11 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow4x^2-4x+1-\left(2x-\sqrt{4x-1}\right)=0\)

\(\Leftrightarrow\left(2x-1\right)^2-\frac{\left(2x-1\right)^2}{2x+\sqrt{4x-1}}=0\)

\(\Leftrightarrow\left(2x-1\right)^2\left(1-\frac{1}{2x+\sqrt{4x-1}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\2x+\sqrt{4x-1}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{4x-1}=1-2x\) (\(x\le\frac{1}{2}\))

\(\Leftrightarrow4x-1=\left(1-2x\right)^2\)

\(\Leftrightarrow4x-1=4x^2-4x+1\)

\(\Leftrightarrow2x^2-4x+1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{2+\sqrt{2}}{2}\left(l\right)\\x=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)

NV
13 tháng 11 2019

b/

Đặt \(3x^2-2x+2=a>0\) ta được:

\(\sqrt{a+7}+\sqrt{a}=7\)

\(\Leftrightarrow2a+7+2\sqrt{a^2+7a}=49\)

\(\Leftrightarrow\sqrt{a^2+7a}=21-a\) (\(a\le21\))

\(\Leftrightarrow a^2+7a=\left(21-a\right)^2\)

\(\Leftrightarrow a^2+7a=a^2-42a+441\)

\(\Rightarrow a=9\Rightarrow3x^2-2x+2=9\)

\(\Leftrightarrow3x^2-2x-7=0\Rightarrow x=\frac{1\pm\sqrt{22}}{3}\)