K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

thay x = 3 vào phương trình

2mx - 5 = -x + 6m - 2 ta được:

2m3 - 5 = -3 + 6m -2

<=> 6m - 5 = -5 + 6m

<=> 6m - 6m = -5 + 5

=> 0m = 0

Phương trình này có vô số nghiêm m

=> điều phải chứng minh

okok

21 tháng 1 2017

Thay x=3 vao phuong trinh roi bien doi ta thay phuong trinh tuong duong voi 0x=0 nên đccm

13 tháng 5 2019

Thay x = 3 vào từng vế của phương trình, ta có:

- Vế phải: -3 + 6m – 2 = 6m – 5

- Vế trái: 2m.3 – 5 = 6m – 5

Điều đó chứng tỏ rằng x = 3 luôn là nghiệm của phương trình với bất kỳ giá trị nào của m.

26 tháng 3 2018

Thay x = 3 vào hai vế của phương trình, ta có:

- Vế trái: 2m.3 – 5 = 6m – 5

- Vế phải: - 3 + 6m – 2 = 6m – 5

Vậy, với mọi m thì phương trình  2mx – 5 = - x + 6m – 2 luôn luôn nhận x = 3 là nghiệm.

26 tháng 3 2018

Thay x = 3 vào phương trình:
6m - 5 = -3 + 6m -2
6m - 5 = 6m - 5
0m = 0
Phương trình luôn có nghiệm là x = 3

1 tháng 5 2017

Thay x = 3 vào 2 vế của phương trình \(2mx-5=-x+6m-2\) ta được :

VT = 2m.3 - 5 = 6m - 5 (1)

VP = -3 +6m - 2 = 6m - 5 (2)

Từ (1) và (2) \(\Rightarrow VT=VP\)

* Vậy x=3 luôn là nghiệm của phương trình trên dù m lấy bất cứ giá trị nào .

9 tháng 6 2019

\(2mx-5=-x+6m-2\)

\(\Leftrightarrow2m\left(x-3\right)+x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(2m+1\right)=0\)

=> phương trình luôn có một nghiệm là x=3

24 tháng 8 2020

2mx - 5 = -x + 6m - 2

<=> 2mx - 5 + x - 6m + 2 = 0

<=> 2mx + x - 6m - 3 = 0

<=> 2m( x - 3 ) + 1( x - 3 ) = 0

<=> ( 2m + 1 )( x - 3 ) = 0

=> Phương trình có một nghiệm x = 3 không phụ thuộc vào m ( đpcm )

21 tháng 1 2022

a) Để phương trình trên là phương trình bậc nhất thì: m≠\(\dfrac{3}{8}\)

c) Để phương trình vô nghiệm thì: m=0

d) Để phương trình vô số nghiệm thì m=\(\dfrac{3}{8}\)

21 tháng 1 2022

a/ \(\left(2m-3\right)x+\left(x-3\right)4m+2mx=0\)

\(\Leftrightarrow\left(8m-3\right)x-12m=0\)

Để phương trình là hàm số bậc 1 :

\(8m-3\ne0\Leftrightarrow m\ne\dfrac{3}{8}\)

b/ Phương trình vô nghiệm :

\(\Leftrightarrow\left\{{}\begin{matrix}8m-3=0\\12m\ne0\end{matrix}\right.\)

c/ Phương trình vô số nghiệm khi :

\(\Leftrightarrow\left\{{}\begin{matrix}8m-3=0\\12m=0\end{matrix}\right.\)

 

2 tháng 3 2018

câu 1,

a, 2(m-1)x +3 = 2m -5

<=> 2x (m-1) - 2m +8 = 0  (1)

Để PT (1) là phương trình bậc nhất 1 ẩn thì:  m - 1 \(\ne\)0 <=> m\(\ne\)1

b, giải PT: 2x +5 = 3(x+2)-1

<=> 2x + 5 -3x -6 + 1 =0

<=> -x = 0

<=>  x = 0

Thay vào (1) ta được: -2m + 8 =0

<=> -2m = -8

<=> m = 4 (t/m)

vậy m = 4 thì pt trên tương đương.................