K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2019

Để M = n + 1 n  là phân số tối giản thì ƯCLN ( n +1,n)  = 1

Gọi ƯCLN (n + 1,n) = d => n + 1 chia hết cho d; n chia hết cho d

=> ( n + 1) – n chia hết cho d

=> 1 chia hết cho d

=> d = 1 với mọi n.

Vậy với mọi n thuộc Z  thì M = n + 1 n  là phân số tối giản

26 tháng 9 2018

Để M = n − 1 n − 2  là phân số tối giản thì ƯCLN (n – 1, n -2) = 1.

Gọi  Ư C L N   ( n   -   1 ,   n     -   2 )   =   d ⇒   n   –   1   ⋮   d ;   n   –   2   ⋮ d

⇒   (   n   –   1 )   –   (   n   –   2 )   ⋮   d   ⇒ 1 ⋮ d ⇒   d   =   1  với mọi n. Vậy với mọi n thuộc Z thì M = n − 1 n − 2   là phân số tối giản.

20 tháng 4 2020

Bg

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = \(\frac{n-1}{n-2}\) (n \(\in\)\(ℤ\); n \(\ne2\))

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) \(⋮\)d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 \(⋮\)d

=> d \(\in\)Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n \(\in\)Z và n \(\ne2\)thì M là phân số tối giản.

5 tháng 3 2021

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 d

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

3 tháng 1 2022

Tham Khảo đâu bạn?

7 tháng 10 2018

Để   M = n + 1 n  là phân số tối giản thì ƯCLN  ( n +1,n)  = 1

Gọi ƯCLN ( n + 1,n) = d => n + 1 ⋮ d; n ⋮ d

=> ( n + 1) – n ⋮ d=> 1 ⋮ d=> d = 1 với mọi n. Vậy với mọi n ∈ ℤ  thì M = n + 1 n  là phân số tối giản.

23 tháng 2 2016

1. Để A tối giản thì:

(n + 1, n + 3) = 1

Gọi d là ƯC nguyên tố của n + 1 và n + 3

=> n + 3 - n - 1 chia hết cho d

=> 2 chia hết cho d

Mà d nguyên tố

=> d = 2

Tìm n để n + 1 chia hết cho d; n + 3 chia hết cho 2

Vì n + 3 = n + 1 + 2 nên n + 3 chia hết cho 2 thì n + 1 chia hết cho 2

=> n + 3 = 2k (k thuộc Z)

=> n = 2k - 3

Vậy n khác 2k - 3 thì A tối giản.

2. 12n + 1 / 30n + 2 tối giản

=> (12n + 1, 30n + 2) = 1

Gọi ƯCLN (12n + 1, 30n + 2) = d

=> 12n + 1 chia hết cho d => 5.(12n + 1) = 60n + 5 chia hết cho d

=> 30n + 2 chia hết cho d => 2.(30n + 2) = 60n + 4 chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy p/số trên tối giản.