K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

- Để M là phân số tối giản \(\Rightarrow\)\(n-1\)không chia hết cho \(n-2\)

- Ta có: \(n-1=\left(n-2\right)+1\)

- Để \(n-1\)không chia hết cho \(n-2\)\(\Leftrightarrow\)\(\left(n-2\right)+1\)không chia hết cho \(n-2\)mà \(n-2⋮n-2\)

 \(\Rightarrow\)\(1\)không chia hết cho \(n-2\)\(\Rightarrow\)\(n-2\notinƯ\left(1\right)\)\(\Leftrightarrow\)\(n-2\notin\left\{\pm1\right\}\)

 +  \(n-2\ne1\)\(\Leftrightarrow\)\(n\ne1+2\)\(\Leftrightarrow\)\(n\ne3\)

 +  \(n-2\ne-1\)\(\Leftrightarrow\)\(n\ne-1+2\)\(\Leftrightarrow\)\(n\ne1\)

Vậy để M là phân số tối giản thì \(n\ne3\)và \(n\ne1\)

31 tháng 1 2018

a) Gọi d là ƯCLN(n, n + 1), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow\left(n+1\right)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n,n+1\right)=1\)

\(\Rightarrow\) \(\frac{n}{n+1}\) là phân số tối giản.

b) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)

\(\Rightarrow\) \(\frac{n+1}{2n+3}\) là phân số tối giản.

31 tháng 1 2018

c) Gọi d là ƯCLN(21n + 4, 14n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(21n+4,14n+3\right)=1\)

\(\Rightarrow\) \(\frac{21n+4}{14n+3}\) là phân số tối giản.

d) Gọi d là ƯCLN(2n + 3, 3n + 5), d ∈ N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,3n+5\right)=1\)

\(\Rightarrow\) \(\frac{2n+3}{3n+5}\) là phân số tối giản.

4 tháng 8 2018

B) n+5/n+3

Ta có:

(n+5) - (n+3) chia hết cho n+3

=>(n-n) + (5-3) chia hết cho n+3

=> 2 chia hết cho n+3

=> n+3 là Ư(2)={1 ; 2 ; -1 ; -2}

Ta có:

*)n+3= 1                         

n=1-3

n= -2

*)n+3=2

n= 2 - 3

n= -1

*)n+3= -1

n= -1-3

n= -4

*)n+3= -2

n= -2 - 3

n= -5

Để tớ gửi từ từ từng câu 1 nhé

4 tháng 8 2018

Bài tớ tự nghĩ thôi nên ko chắc là làm đúng đâu bạn nhé

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

3 tháng 11 2016

Gọi d là ƯC nguyên tố của n + 19 và n - 2.

=> n + 19 chia hết cho d

     n - 2 chia hết cho d

=> ( n + 19 ) - ( n - 2 ) chia hết cho d

=> 21 chia hết cho d 

Mà d là số nguyên tố nhỏ nhất

=> d = 3

Do n + 19 = ( n - 2 ) + 21 nên nếu n - 2 chia hết cho 3 thì n + 19 chia hết cho 3.

Nên ta chỉ cần tìm n để n - 2 chia hết cho 3

Với n = 3k + 2 ( k \(\in\)N* ) thì \(\frac{n+19}{n-2}\) rút gọn được.

Còn với n \(\ne\)3k + 2 ( k \(\in\)N* ) hay n có dạng 3k hoặc 3k+1 thì \(\frac{n+19}{n-2}\) tối giản.

3 tháng 11 2016

/surrender

Tớ chưa học nên tớ không biết Z là cái j.

nhé

21 tháng 3 2021

1/n=3