Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
goi D LA U (6N+7;2N+1)
- =>6N+7 5CHIAHET CHO D
=>2N+1 CHIA HET CHO D
=>1(6N+7) CHIA HET CHO D
=>3(2N+6) CHIA HETS CHO D
=>[6N+7)-(6N+6)] CHIA HET CHO D
=>D CHIA HET CHO D
=>D=1
=>6N+7/2N+1 LA P/S TOI GIAN
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a.\(A=\frac{6n+7}{2n+1}=\frac{3\left(2n+1\right)-3+7}{2n+1}=3+\frac{4}{2n+1}\)
Để A nguyên thì 4 phải chia hết cho 2n+1
=> 2n+1 \(\varepsilon\)Ư(4) = {-4;-2;-1;1;2;4}
Mà 2n + 1 là số lẻ
=> 2n + 1 \(\varepsilon\){-1;1}
=> 2n \(\varepsilon\){-2;0}
=> n \(\varepsilon\){-1;0}
Vậy:...
M=(6n+4-5):(3n+2)=2-5:(3n+2)
a) để M nguyên thì (3n+2) phải là ước của 5
=> 3n+2={-5; -1; 1; 5}
+/ 3n+2=-5 => n=-7/3 (loại)
+/ 3n+2=-1 => n=-1; M=7
+/ 3n+2=1 => n=-1/3 loại
+/ 3n+2=5 => n=1; M=-3
Đs: n={-1; 1}
b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0
Mmin=2-5/2=-1/2
GTLN = 16
n = -2
nha bạn chúc bạn học tốt nha
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên
=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }
=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }
b. thêm điều kiện n\(\in\)Z
Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n )
Ta có :
A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3
a. Để A nguyên thì 13/2n+3∈Z
⇒2n+3∈{−13;−1;1;13}
⇒2n∈{−16;−4;−2;10}
⇒n∈{−8;−2;−1;5}
b. Bổ sung điều kiện : A thuộc Z
Để A max thì 13/2n+3 min
⇔2n+3 max ∈ Z
Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1
⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)
Vậy A max = 16 <=> n = -2
max là giá trị lớn nhất
min là giá trị nhỏ nhất
HT
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
a, để B là số nguyên thì 6n+7 chia hết cho 2n+3
=> 6n+9-2 chia hết cho 2n+3
Vì 6n+9 chia hết cho 2n+3
=> 2 chia hết cho 2n+3
Mà 2n+3 lẻ
=> 2n+3 thuộc ước lẻ của 2
KL: n\(\in\){-1; -2}