Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A có giá trị nguyên thì \(n-5⋮n+1\)
\(\Leftrightarrow n+1-6⋮n+1\)
mà \(n+1⋮n+1\)
nên \(-6⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-6\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
b)
Ta có: \(A=\dfrac{n-5}{n+1}\)
\(=\dfrac{n+1-6}{n+1}\)
\(=1-\dfrac{6}{n+1}\)
Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1
\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)
\(\Leftrightarrow n+1⋮̸6\)
\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)
\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)
Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản
a) \(\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Vậy 4 chia hết cho n - 3.
n - 3 lần lượt có các giá trị là: 1;2;4;-1;-2;-4
Nên n lần lượt có các giá trị là: -1;1;2;4;5;7
a)A nguyên
suy ra n+1 chia hết cho n-3
suy ra n-3+4 chia hết cho n-3
mà n-3 chia hết cho n-3
suy ra 4 chia hết cho n-3
suy ra n-3 thuộc ước của a
n thuộcZ
suy ra n-3 thuộc -1,1 -2,2,4,-4
suy ra n=2,4,1,5,7,-1
b)n+1/n-3 là phân số tối giản
suy ra (n+1,n-3)=1
\(A=\frac{n+1}{n-3}\)
\(\Leftrightarrow n+1⋮n-3\)
\(\Leftrightarrow n-3+4⋮n-3\)
Vì \(n-3⋮n-3\)
\(\Leftrightarrow4⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Tự lập bảng r tự lm mấy phần ab
Có : \(\frac{n-5}{n+1}=\frac{\left(n+1\right)-6}{n+1}=\frac{n+1}{n+1}-\frac{6}{n+1}=1-\frac{6}{n+1}\)
Để \(1-\frac{6}{n+1}\in Z\Leftrightarrow\frac{6}{n+1}\in Z\)
=> n + 1 thuộc Ư 6 => n + 1 = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 6 }
=> n = { - 7 ; - 4 ; - 3 ; - 2 ; 0 ; 1 ; 2 ; 5 }
Bài 1:
Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)
Khi đó ta có:
a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)