K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để A là số nguyên thì \(2m+3⋮m+1\)

\(\Leftrightarrow2m+2+1⋮m+1\)

\(\Leftrightarrow m+1\in\left\{1;-1\right\}\)

hay \(m\in\left\{0;-2\right\}\)

b: Gọi a=UCLN(2m+3;m+1)

\(\Leftrightarrow2m+3-2m-2⋮a\)

\(\Leftrightarrow1⋮a\)

=>UCLN(2m+3;m+1)=1

=>A là phân số tối giản

27 tháng 4 2023

a)Do m ∈ Z => 2m+3, m+1  ∈ Z

Để 2m+3/m+1  ∈ Z => 2m+3 ⋮ m+1

Mà m+1 ⋮ m+1 => 2(m+1) ⋮ m+1 => 2m+2 ⋮ m+1

=> (2m+3)-(2m+2) ⋮ m+1 => 1 ⋮ m+1

Do m+1 ∈ Z => m+1 ∈ {1; -1}

Nếu m + 1 = 1 => m = 0 (t/m)

m+1 = -1 => m = -2 (t/m)

Vậy m ∈ {0; -2}

b) Gọi ƯCLN(2m+3, m+1) = d (d ∈ N*)

=> 2m+3 

m+1 ⋮ d => 2(m+1) ⋮ d => 2m+2 ⋮ d

=> (2m+3) - (2m+2) ⋮ d

=> 1 ⋮ d

Mà d∈ N* => d =1

Vậy phân số B tối giản (đpcm)

7 tháng 5 2022

\(B=\dfrac{2\left(m+1\right)+1}{m+1}=2+\dfrac{1}{m+1}\)

Để B nguyên 

\(\Rightarrow\left(m+1\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)

m+1     1         -1

m         0         -2

7 tháng 5 2022

\(B=\dfrac{2m+3}{m+1}=\dfrac{2m+2+1}{m+1}=\dfrac{2\left(m+1\right)+1}{m+1}\)ư

\(B=\dfrac{2\left(m+1\right)}{m+1}+\dfrac{1}{m+1}=2+\dfrac{1}{m+1}\)

để \(B\in Z=>m+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\left\{{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)

vậy \(m\in\left\{0;-2\right\}\left(thì\right)B\in Z\)

31 tháng 3 2022

gfvfvfvfvfvfvfv555

Đặt d = ( 4m + 8 , 2m + 3 )

\(\Rightarrow4m+8⋮d\)

\(2m+3⋮d\)\(\Rightarrow2\left(2m+3\right)⋮d\)\(\Rightarrow4m+6⋮d\)

\(\Rightarrow\left(4m+8-4m-6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\inƯC\left(2\right)\)

\(\Rightarrow d\in\left(1;2\right)\)

Do 2m + 3 là số lẻ nên d là số lẻ

\(\Rightarrow d=1\)

Vậy \(\left(4m+8;2m+3\right)=1\)

Hay \(\frac{4m+8}{2m+3}\)là phân số tối giản

12 tháng 3 2017

Đặt d = ( 4m + 8 , 2m + 3 )

\(\Rightarrow4m+8⋮d\)

\(2m+3⋮d\)\(\Rightarrow2\left(2m+3\right)⋮d\)\(\Rightarrow4m+6⋮d\)

\(\Rightarrow\left(4m+8-4m-6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\inƯC\left(2\right)\)

\(\Rightarrow d\in\left(1;2\right)\)

Do 2m + 3 là số lẻ nên d là số lẻ

\(\Rightarrow d=1\)

Vậy \(\left(4m+8;2m+3\right)=1\)

Hay \(\frac{4m+8}{2m+3}\)là phân số tối giản