K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2020

1. PT hoành độ giao điểm:

x2−(2x−m2+9)=0⇔x2−2x+m2−9=0(∗)

Khi m=1

thì pt trên trở thành: x2−2x−8=0

⇔(x−4)(x+2)=0⇒x=4

hoặc x=−2

Khi x=4⇒y=x2=16

. Giao điểm thứ nhất là (4,16)

Khi x=−2⇒y=x2=4

. Giao điểm thứ hai là (−2,4)

2. (P)

và (d) cắt nhau tại 2 điểm phân biệt ⇔(∗)

có 2 nghiệm phân biệt (hai nghiệm ấy chính là giá trị của 2 hoành độ giao điểm)

⇔Δ′=1−(m2−9)>0⇔10>m2(1)

Hai giao điểm nằm về phía của trục tung, nghĩa là 2 hoành độ giao điểm x1,x2

trái dấu. Điều này xảy ra khi x1x2<0⇔m2−9<0(2)

Từ (1);(2)

suy ra m2−9<0⇔−3<m<3

a) Khi \(m=1\) \(\Rightarrow\left(d\right):y=2x+8\)

Xét phương trình hoành độ giao điểm

  \(x^2=2x+8\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

+) Với \(x=4\Rightarrow y=16\)

+) Với \(x=-2\Rightarrow y=4\)

  Vậy khi \(m=1\) thì (P) cắt (d) tại 2 điểm phân biệt \(\left(4;16\right)\) và \(\left(-2;4\right)\)

b) Xét phương trình hoành độ giao điểm

  \(x^2-2x+m^2-9=0\)  (*)

Ta có: \(\Delta'=10-m^2\) 

Để (P) cắt (d) \(\Leftrightarrow\) Phương trình (*) có 2 nghiệm phân biệt 

\(\Leftrightarrow\Delta'=10-m^2>0\) \(\Leftrightarrow-\sqrt{10}< m< \sqrt{10}\)

Theo đề: (P) cắt (d) tại 2 điểm nằm về 2 phía của trục tung

\(\Leftrightarrow\) Phương trình (*) có 2 nghiệm trái dấu

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x_1x_2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}10-m^2>0\\m^2-9< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{10}< m< \sqrt{10}\\-3< m< 3\end{matrix}\right.\) \(\Leftrightarrow-3< m< 3\)

  Vậy ...

 

25 tháng 9 2017

b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi

Đề kiểm tra Toán 9 | Đề thi Toán 9

Khi đó 2 nghiệm của phương trình là:

Đề kiểm tra Toán 9 | Đề thi Toán 9
Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ BB' ⊥ OM ; AA' ⊥ OM

Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có:

S A O M  = 1/2 AA'.OM ; S B O M  = 1/2 BB'.OM

Theo bài ra:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Do m > 0 nên m = 8

Vậy với m = 8 thì thỏa mãn điều kiện đề bài.

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

1. PT hoành độ giao điểm:

$x^2-(2x-m^2+9)=0\Leftrightarrow x^2-2x+m^2-9=0(*)$

Khi $m=1$ thì pt trên trở thành: $x^2-2x-8=0$

$\Leftrightarrow (x-4)(x+2)=0\Rightarrow x=4$ hoặc $x=-2$

Khi $x=4\Rightarrow y=x^2=16$. Giao điểm thứ nhất là $(4,16)$

Khi $x=-2\Rightarrow y=x^2=4$. Giao điểm thứ hai là $(-2,4)$

2. $(P)$ và $(d)$ cắt nhau tại 2 điểm phân biệt $\Leftrightarrow (*)$ có 2 nghiệm phân biệt (hai nghiệm ấy chính là giá trị của 2 hoành độ giao điểm)

$\Leftrightarrow \Delta'=1-(m^2-9)>0\Leftrightarrow 10>m^2(1)$

Hai giao điểm nằm về phía của trục tung, nghĩa là 2 hoành độ giao điểm $x_1,x_2$ trái dấu. Điều này xảy ra khi $x_1x_2< 0\Leftrightarrow m^2-9< 0(2)$

Từ $(1);(2)$ suy ra $m^2-9< 0\Leftrightarrow -3< m< 3$

10 tháng 6 2023

Vì đường thẳng (d) cắt (P) tại hai điểm nằm về phía của trục tung  nên phương trình sẽ có 2 nghiệm trái dấu

PT có 2 nghiệm trái dấu thì \(\left\{{}\begin{matrix}\Delta'>0\\P< 0\end{matrix}\right.\)

PT hoành độ giao điểm giữa ( P ) và ( d ) là \(x^2-2x+m-9=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=b'^2-ac=\left(-1\right)^2-1.\left(m-9\right)>0\\P=m-9< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-m+10>0\\m-9< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}m< 10\\m< 9\end{matrix}\right.\\ \Leftrightarrow m< 9\)

Vậy m < 9 thì đường thẳng (d) cắt (P) tại hai điểm nằm về phía của trục tung

a) Xét phương trình hoành độ giao điểm

  \(x^2=-x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-2\Rightarrow y=4\end{matrix}\right.\)

  Vậy tọa độ giao điểm là \(\left(1;1\right)\) và \(\left(-2;4\right)\)

  

bạn xem lại đề phần b 

undefined

a: Thay m=3 vào (d), ta được:

y=3x-3+1=3x-2

Tọa độ giao điểm của (P) và (d) là:

\(\left\{{}\begin{matrix}x^2-3x+2=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-2\right)=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(1;1\right);\left(2;4\right)\right\}\)

b: Phương trình hoành độ giao điểm là:

\(x^2-mx+m-1=0\)

Để (P) cắt (d) tại hai điểm về hai phía của trục tung thì m-1<0

hay m<1

c: Để (P) cắt (d) tại hai điểm phân biệt có hoành độ dương thì 

\(\left\{{}\begin{matrix}\left(-m\right)^2-4\left(m-1\right)>0\\m>0\\m-1>0\end{matrix}\right.\Leftrightarrow m>1\)

 

NV
18 tháng 3 2021

Pt hoành độ giao điểm: 

\(x^2=2x+m\Leftrightarrow x^2-2x-m=0\) (1)

(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow-m< 0\Rightarrow m>0\)

PTHĐGĐ là:

x^2-2x+m-3=0

Để (P) cắt (d) hai điểm phân biệt nằm về hai phía của trục tung thì m-3<0

=>m<3