Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Thay x = 1 ; y = 4 vào đồ thị hàm số (P)
\(\Rightarrow4=1^2=1\) ( vô lí )
=> A ( \(1;4\) ) không thuộc đồ thị hàm số (P)
2) (d) đi qua A ( 1; 4 ) và có hệ số góc bằng k
=> 4 = k . 1
=> k = 4
=> Phương trình đường thẳng (d) là
y = 4x
a ) Với k = 2 , ta có (d) : y= 2x
Phương trình hoành độ giao điểm của (d) và (P) là
\(x^2=2x\Rightarrow x^2-2x=0\Rightarrow x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=2x=0\\x=2\Rightarrow y=2x=4\end{matrix}\right.\)
Vậy giao điểm của (d) và (P) là các điểm có tọa độ (0;0 ) và ( 2;4 )
b ) Ta có (d) : y = kx , luôn đi qua gốc tọa độ
(P) y = \(x^2\) luôn đi qua gốc tọa độ
=> Với mọi giá trị của k , đường thẳng (d) luôn cắt (P) y = x^2 ( tại gốc tọa độ )
1. Thay x = 1 ; y = 4 vào đồ thị hàm số (P)
⇒4=12=1⇒4=12=1 ( vô lí )
=> A ( 1;41;4 ) không thuộc đồ thị hàm số (P)
2) (d) đi qua A ( 1; 4 ) và có hệ số góc bằng k
=> 4 = k . 1
=> k = 4
=> Phương trình đường thẳng (d) là
y = 4x
a ) Với k = 2 , ta có (d) : y= 2x
Phương trình hoành độ giao điểm của (d) và (P) là
x2=2x⇒x2−2x=0⇒x(x−2)=0x2=2x⇒x2−2x=0⇒x(x−2)=0
⇒[x=0⇒y=2x=0x=2⇒y=2x=4⇒[x=0⇒y=2x=0x=2⇒y=2x=4
Vậy giao điểm của (d) và (P) là các điểm có tọa độ (0;0 ) và ( 2;4 )
b ) Ta có (d) : y = kx , luôn đi qua gốc tọa độ
(P) y = x2x2 luôn đi qua gốc tọa độ
=> Với mọi giá trị của k , đường thẳng (d) luôn cắt (P) y = x^2 ( tại gốc tọa độ )
1. vẽ hình
y ' = 2X =0 => X = 0 , tự vẽ
2. ta có hệ số góc k = Y'(2) =4
KL : K=4 THỎA YÊU CẦU ĐỀ BÀI
Phương trình hoành độ giao điểm của (d) và (P):
=> x^2 = (2m+2)x-m^2-2m
<=>x^2 -(2m+2)x+m^2+2m=0
(a=1;b=-(2m+2);c=m^2+2m)
Để 2 (d) cắt (P) tại 2 điểm phân biệt => \(\Delta\) >0
<=> (2m+2)^2-4(m^2+2m)>0
<=> 4m^2+8m+4-4m^2-8m>0
<=> 4>0 (luôn đúng)
Theo hệ thức Vi ét ta có: \(\hept{\begin{cases}x1+x2=2m+2\\x1.x2=m^2+2m\end{cases}}\)
x1+x2=5 <=> 2m+2=5 <=> 2m=3 <=> m=3/2.
(Mình cứ thấy nó sai sai và thiếu thiếu sao ý, cái đề ý)
em mới học lớp 7