Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi là điểm tiếp xúc của (C), (P) nằm bên phải trục tung. Phương trình tiếp tuyến của (P) tại điểmA là Vì (C), (P) tiếp xúc với nhau tại A nên tA là tiếp tuyến chung tại A của cả (C), (P). Do đó
Vì
Diện tích hình phẳng cần tính bằng diện tích hình phẳng giới hạn bởi
Chọn đáp án D.
Ta có
S 1 = ∫ 0 k e x sin x d x ; S 2 = ∫ k π e x sin x d x S = S 1 + S 2 = ∫ 0 π e x sin x d x
2 S 1 + 2 S 2 - 1 = 2 S 1 - 1 2
⇔ S 2 = 2 S 1 2 - 2 S 1 + 1 - S = 0 ⇔ 2 ∫ 0 k e x sin x d x 2 - 2 ∫ 0 k e x sin x d x + 1 - ∫ 0 k e x sin x d x = 0
Tính toán trực tiếp qua các đáp án ta thấy PT trên đúng với k = π 2
Đáp án cần chọn là B
Đáp án D
Thể tích khối tròn xoay cần tính là
V = π ∫ 0 π sin 2 2 x d x = π ∫ 0 π 1 − cos 4 x 2 d x = π 2 x − 1 4 sin 4 x 0 π = π 2 π − 0 = π 2 2 .
Đáp án B.
Phương trình hoành độ giao điểm là:
3 x 2 = 4 − x 2 ⇒ 0 ≤ x ≤ 2 3 x 4 = 4 − x 2 ⇔ x = 1.
Dựa vào hình vẽ ta có:
S = ∫ 0 1 3 x 2 d x + ∫ 1 2 4 − x 2 d x = 3 x 3 3 1 0 + I 1 = 3 3 + I 1
Với I = ∫ 1 2 4 − x 2 d x , sử dụng CASIO
hoặc đặt x = 2 sin t ⇒ d x = 2 cos t d t
Đổi cận
x = 1 ⇒ t = π 6 x = 2 ⇒ t = π 2 ⇒ I 1 = ∫ π 6 π 2 4 − 4 sin 2 t . c o s tdt = ∫ π 6 π 2 2 1 + c o s 2 t d t = 2 t − sin 2 t π 2 π 6
⇒ I 1 = 1 6 4 π − 3 3 . Do đó S = 4 π − 3 6 .
Phần diện tích giới hạn bởi đường x = 4 - y 2 ; x = y 3 ; y = 0; y = 3 nên diện tích cần tìm là
S = ∫ 0 3 4 - y 2 - y 3 d y rồi dùng máy tính cầm tay để kết luận.
Đáp án cần chọn là B
Đáp án B
Xét phương trình tương giao:
3 x 2 = 4 − x 2 ⇔ 3 x 4 = 4 − x 2 ⇔ x 2 = 1 ⇒ x = ± 1 x 2 = − 4 3 ( L ) S = ∫ 0 1 3 x 2 d x + ∫ 1 2 4 − x 2 d x = 3 x 3 3 1 0 + S 2 S 2 : x = 2 sin t , t ∈ ( − π 2 ; π 2 ) ⇒ d x = 2 cos t d t S 2 : ∫ π 6 π 2 2 cos t .2 cos t d t = ∫ π 6 π 2 4 cos 2 t d t = 2 ∫ π 6 π 2 ( 1 + cos 2 t ) d t = 2 [ t + sin 2 t 2 ] π 2 π 6 = 2 π 3 − 3 2 ⇒ S = 3 3 + 2 π 3 − 3 2
Ta cần tìm phương trình của đường tròn:
Vì đường tròn có bán kính bằng 1 và tiếp xúc với trục hoành nên tâm của đường tròn là I(t;1), (t > 0) phương trình của đường tròn là x - 1 2 + y - 1 2 = 1 .
Theo giả thiết đường tròn (C) có chung một điểm AA duy nhất với (P). nên tiếp tuyến tA tại A của (P) cũng là tiếp tuyến của (C).
Xét điểm A a ; 1 2 ; a 2 ,
Ta có hệ điều kiện:
A ∈ ( C ) I A ⊥ t A
Vậy phương trình đường tròn
Diện tích hình phẳng cần tính là
Chọn đáp án D.