K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2020

Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có

\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)

\(\Rightarrow y=x^2-2x-24\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Parabol: \(y = a{(x - h)^2} + k\) với \(I(h;k) = \left( {\frac{5}{2}; - \frac{1}{4}} \right)\) là tọa độ đỉnh.

\( \Rightarrow y = a{\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4}\)

(P) đi qua \(A(1;2)\) nên \(2 = a{\left( {1 - \frac{5}{2}} \right)^2} - \frac{1}{4} \Rightarrow a = 1\)

\( \Rightarrow y = {\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4} \Leftrightarrow y = {x^2} - 5x + 6\)

Vậy parabol đó là \(y = {x^2} - 5x + 6\)

b) Vẽ parabol \(y = {x^2} - 5x + 6\)

+ Đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\)

+ Giao với Oy tại điểm \((0;6)\)

+ Giao với Ox tại điểm \((3;0)\) và \((2;0)\)

+ Trục đối xứng \(x = \frac{5}{2}\). Điểm đối xứng với điểm \((0;6)\) qua trục đối xứng có tọa độ \((5;6)\)

 

b) Hàm số đồng biến trên khoảng \(\left( { - \frac{5}{2}; + \infty } \right)\)

Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{5}{2}} \right)\)

c) \(f(x) \ge 0 \Leftrightarrow {x^2} - 5x + 6 \ge 0\)

Cách 1: Quan sát đồ thị, ta thấy các điểm có\(y \ge 0\) ứng với hoành độ \(x \in ( - \infty ;2] \cup [3; + \infty )\)

Do đó tập nghiệm của BPT \(f(x) \ge 0\) là \(S = ( - \infty ;2] \cup [3; + \infty )\)

Cách 2:

\(\begin{array}{l} \Leftrightarrow {x^2} - 5x + 6 \ge 0\\ \Leftrightarrow (x - 2)(x - 3) \ge 0\end{array}\)

Do đó \(x - 2\) và \(x - 3\) cùng dấu. Mà \(x - 2 > x - 3\;\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left[ \begin{array}{l}x - 3 \ge 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le 2\end{array} \right.\)

Tập nghiệm của BPT là \(S = ( - \infty ;2] \cup [3; + \infty )\)

DD
6 tháng 9 2021

\(y=ax^2+bx-7\)đi qua điểm \(A\left(-1,-6\right)\)nên \(a-b-7=-6\Leftrightarrow a-b=1\)(1)

\(y=ax^2+bx-7\)có trục đối xứng \(x=-\frac{1}{3}\)nên \(\frac{-b}{2a}=-\frac{1}{3}\Leftrightarrow2a-3b=0\)(2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)

\(a^2-b^2=3^2-2^2=5\).

6 tháng 9 2021

Vào thăm trang cá nhân của tớ nhá

11 tháng 5 2018

+ Parabol y = ax2 + bx + 2 đi qua điểm B(–1 ; 6)

⇒ 6 = a.( –1)2 + b.( –1) + 2 ⇒ a = b + 4 (1)

+ Parabol y = ax2 + bx + 2 có tung độ của đỉnh là –1/4

Giải bài 3 trang 49 sgk Đại số 10 | Để học tốt Toán 10

Thay (1) vào (2) ta được: b2 = 9.(b + 4) ⇔ b2 – 9b – 36 = 0.

Phương trình có hai nghiệm b = 12 hoặc b = –3.

Với b = 12 thì a = 16.

Với b = –3 thì a = 1.

Vậy có hai parabol thỏa mãn là y = 16x2 + 12b + 2 và y = x2 – 3x + 2.

6 tháng 9 2021

có ai chơi ff ko

NV
10 tháng 10 2019

Từ đề bài ta có:

a/ \(\left\{{}\begin{matrix}0.a+0.b+c=0\\a+b+c=1\\a-b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=2\\c=0\end{matrix}\right.\) \(\Rightarrow y=-x^2+2x\)

b/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=8\\0.a+0.b+c=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=5\\c=-6\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}0.a+0.b+c=5\\-\frac{b}{2a}=3\\\frac{b^2-4ac}{4a}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=5\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=0\\-\frac{b}{2a}=\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k\\b=-3k\\c=2k\end{matrix}\right.\) với k là số thực khác 0 bất kì

4 tháng 9 2021

Tìm Parabol (P): y=ax2​+bx+c  đi qua điểm A(1;0) và có tung độ đỉnh bằng -1

11 tháng 1 2018

Đáp án D