K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài này thì đơn giản thôi

1+(ac+bd)2=(ad-bc)2+(ac+bd)2=a2d2+b2c2+a2c2+b2d2

=(a2+b2)(c2+d2)

\(P=a^2+b^2+c^2+d^2+ac+bd\ge ac+bd+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)

\(=ac+bd+2\sqrt{\left(ac+bd\right)^2+1}\)

đặt ac+bd=Q.

P trở thành:

\(P=Q+2\sqrt{Q^2+1}\Rightarrow P^2=Q^2+4\left(Q^2+1\right)+4Q.\sqrt{Q^2+1}=\left(\sqrt{Q^2+1}+2Q\right)^2+3\ge3\)

\(\Rightarrow P\ge\sqrt{3}\left(Q.E.D\right)\)

24 tháng 8 2017

Bạn giải thích chỗ này ra được không \(ac+bd+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)

\(=ac+bd+2\sqrt{\left(ac+bd\right)^2+1}\)

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Lời giải:

Đặt biểu thức đã cho là $A$.
Áp dụng BĐT AM-GM ta có:

\(a^2+b^2+c^2+d^2\geq 2\sqrt{(a^2+b^2)(c^2+d^2)}\)

Mà:
\((a^2+b^2)(c^2+d^2)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=(ac-bd)^2+(ad+bc)^2=1+(ad+bc)^2\)

\(\Rightarrow a^2+b^2+c^2+d^2\geq 2\sqrt{1+(ad+bc)^2}\)

\(\Rightarrow A\geq 2\sqrt{1+(ad+bc)^2}+ad+bc\). Đặt $ad+bc=t$ thì: $A\geq 2\sqrt{t^2+1}+t$.

Áp dụng BĐT Bunhiacopxky:

\((t^2+1)\left[(\frac{-1}{2})^2+(\frac{\sqrt{3}}{2})^2\right]\geq (\frac{-t}{2}+\frac{\sqrt{3}}{2})^2\)

\(\Leftrightarrow \sqrt{t^2+1}\geq |\frac{-t}{2}+\frac{\sqrt{3}}{2}|\)

\(\Rightarrow A\geq 2\sqrt{t^2+1}+t\geq 2|\frac{-t}{2}+\frac{\sqrt{3}}{2}|+t\geq 2(\frac{-t}{2}+\frac{\sqrt{3}}{2})+t=\sqrt{3}\) (đpcm)

17 tháng 5 2020

Dấu bằng xảy ta khi nào vậy bạn

19 tháng 8 2018

ta có \(a^2+b^2+c^2+d^2+ac+bd\)d

=2(...................giống bên trên......................)=2a^2+2b^2+2c^2+2d^2+2ac+2bd

=(a^2+2ac+c^2)+(b^2+2bd+d^2)+(a^2+2ad+d^2)+(b^2+2bc+c^2)-2ad-2bc

=(a+c)^2+(b+d)^2+(a+d)^2+(b+c)^2-2(ad-bc)

mà ad-bc=-1

đến dây bạn tự làm

20 tháng 8 2018

toán ko có lời giải   mà người đăng câu hỏi này cx có  vấn đề thần kinh mong mn thông cảm 

người vít câu tl này là ng thông minh và đẹp trai

22 tháng 11 2019

P≥ \(\sqrt{3}\) nha

23 tháng 11 2019

Ta có (ad−bc)2+(ac+bd)2=a2d2+b2c2−2abcd+a2c2+b2d2+2abcd=(a2+b2)(c2+d2)
Từ gia thiết ta có
1+(ac+bd)2=(a2+b2)(c2+d2)
Áp dụng BĐT AM-GM ta có
(a2+b2)+(c2+d2)≥2√(a2+b2)(c2+d2)
Do đó S≥ac+bd+2√(a2+b2)(c2+d2)
=> S≥(ac+bd)+2√1+(ac+bd)2
Dễ thấy rằng S>0
Đặt x = ac+bd
=>S≥x+2√1+x2
S2≥x2+4(1+x2)+4x.√1+x2=(√1+x2+2x)2+3≥3
Do đó S≥√3 (đpcm)

11 tháng 6 2016

mà đề cho (a^2 + b^2) + (c^2 + d^2) thì phải liên tưởng đến (a^2 + b^2)(c^2 + d^2) để đưa vào bất đẳng thức. Vậy phải xuất phát từ biểu thức này và biến đổi theo một cách nào đó cho nó xuất hiện giả thiết là : ad - bc = 1. Ở đây là thêm và bớt 2abcd 
Ta có: (a^2 + b^2)(c^2 + d^2) = (ac)^2 + (bd)^2 + (ad)^2 + (bc)^2 - 2abcd + 2abcd = (ad - bc)^2 + (ac + bd)^2 
Thay: ad - bc = 1 => 1 + (ac + bd)^2 = (a^2 + b^2)(c^2 + d^2) 
Áp dụng BĐT Cauchy: 
(a^2 + b^2) + (c^2 + d^2) ≥ 2√[(a^2 + b^2)(c^2 + d^2)] 
=> a^2 + b^2 + c^2 + d^2 + ac + bd ≥ 2√[(a^2 + b^2)(c^2 + d^2)] + ac + bd 
Do đó chỉ cần CM: 2√[(a^2 + b^2)(c^2 + d^2)] + ac + bd ≥ √3 
<=> 2 √[1 + (ac + bd)^2] + ac + bd ≥ √3 
Đặt ac + bd = x và p = 2√(1 + x^2) + x 
Ta có IxI = √(x^2) < 2√(1 + x^2) ; mà IxI ≥ -x => p > 0 
Xét: p^2 = 4(1 + x)^2 + 4x√(1 + x^2) + x^2 = (1 + x^2) + 4x√(1 + x^2) + 4x^2 + 3 
= [√(1 + x^2) + 2x]^2 + 3 ≥ 3 => p^2 ≥ 3 => p ≥ √3 
=> S ≥ √3 
b/ Dấu đẳng thức xảy ra khi a^2 + b^2 = c^2 + d^2 và √(1 + x^2) + 2x = 0 => x = -1/√3 
Khi đó có: a^2 + b^2 = c^2 + d^2 và ac + bd = -1/√3 và ad - bc = 1 
Theo biến đổi ở đầu bài thì (a^2 + b^2)(c^2 + d^2) = (ad - bc)^2 + (ac + bd)^2 = 1 + 1/3 = 4/3 
Do đó: a^2 + b^2 = c^2 + d^2 = 2/√3 
Ta có: (a + c)^2 + (b + d)^2 = a^2 + c^2 + b^2 + d^2 + 2ac + 2bd = 2. 2/√3 + 2.(-1/√3) = 2/√3 
vậy: (a + c)^2 + (b + d)^2 = 2/√3

Học chi cho lắm cx bằng nhau à

21 tháng 5 2016

\(\Leftrightarrow2x\sqrt{1-x^2}+2x^2+\sqrt{1-x}=1\)

\(\Leftrightarrow2x\sqrt{1-x^2}+2x^2+\sqrt{1-x}-1=0\)

\(\Leftrightarrow x=0\)

21 tháng 5 2016

1. 

\(\left(ad-bc\right)^2+\left(ac+bd\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

Thay ad-bc=1 \(\Rightarrow1+\left(ac+bd\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

Áp dụng bđt Cosi : 

\(\left(a^2+b^2\right)+\left(c^2+d^2\right)\ge2\sqrt{\left(a^2+b^2\right)\left(b^2+d^2\right)}\)

\(\Rightarrow a^2+b^2+c^2+d^2+ac+bd\ge2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}+ac+bd\)

Do đó chỉ cần chứng minh \(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}+ac+bd\ge\sqrt{3}\) hay \(2\sqrt{1+\left(ac+bd\right)^2}+ac+bd\ge\sqrt{3}\)

Đặt \(ac+bd=x\) và \(y=2\sqrt{1+x^2}+x\)

Ta có ; \(\left|x\right|=\sqrt{x^2}< 2\sqrt{1+x^2}\) mà \(\left|x\right|\ge-x\Rightarrow y>0\)

Xét : \(y^2=4\left(1+x\right)^2+4x\sqrt{1+x^2}+x^2=\left(1+x\right)^2+4x\sqrt{1+x^2}+4x^2+3\)

\(=\left(\sqrt{1+x^2}+2x\right)^2+3\ge3\)\(\Rightarrow y^2\ge3\Rightarrow y\ge\sqrt{3}\)

Suy ra \(M\ge\sqrt{3}\)(đpcm)

22 tháng 9 2017

ta có \(\left(ad-bc\right)^2+\left(ac+bd\right)^2=a^2d^2-2abcd+b^2c^2+a^2c^2+2abcd+b^2d^2\)

        \(=a^2d^2+a^2c^2+b^2d^2+b^2c^2=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

=> \(1+\left(ac+bd\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

Áp dụng bất đẳng thức cô si ta có 

\(\left(a^2+b^2\right)+\left(c^2+d^2\right)\ge2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}=2\sqrt{1+\left(ac+bd\right)^2}\)

=> \(a^2+b^2+c^2+d^2+ac+bd\ge2\sqrt{\left(ac+bd\right)^2+1}+ac+bd\)

đặt \(ac+bd=m\left(m\ge0\right)\)

=> \(S\ge m+2\sqrt{m^2+1}\)

ta cần chắng minh \(m+2\sqrt{m^2+1}\ge\sqrt{3}\Leftrightarrow m^2+4\left(m^2+1\right)+4m\sqrt{m^2+1}\ge3\)

                            \(\Leftrightarrow m^2+1+4m^2+4m\sqrt{m^2+1}\ge0\Leftrightarrow\left(\sqrt{m^2+1}+2m\right)^2\ge0\) (luôn đúng)

=> \(S\ge\sqrt{3}\) (ĐPCM)

10 tháng 2 2016

mấy đứa con nít đi chỗ khác chơi

em ms hok lp 7 thui ak! sorry nha 2 năm nữa e giải cho!

25 tháng 6 2018

Giải:

\(S=a^2+b^2+c^2+d^2+ac+bd\)

\(\Leftrightarrow S=a^2+b^2+c^2+d^2-2ac+ac+2bd-bd\)

\(\Leftrightarrow S=a^2-2ac+c^2+b^2+2bd+d^2+ac-bd\)

\(\Leftrightarrow S=\left(a^2-2ac+c^2\right)+\left(b^2+2bd+d^2\right)-\left(ac-bd\right)\)

\(\Leftrightarrow S=\left(a-c\right)^2+\left(b+d\right)^2-1\)

\(\Leftrightarrow S\ge-1\)

\(\Leftrightarrow S\ge\sqrt{3}\left(\sqrt{3}>1\right)\)

Vậy ...