K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

câu a :

Vì \(a=\frac{1}{4}>0\)nên đồ thị hàm số có đồ thị nằm phía trên trục hoành và có đỉnh parabol đi qua gốc tọa độ (0,0)

bảng giá trị :

x-4-2024
y41014

Đồ thị  -4 4 4 1 2 2 y x 0

Qua đồ thị ta thấy khi \(x\in\left(-\infty;0\right)\)hàm nghịch biến ; \(x\in\left(0;\infty\right)\)hàm số đồng biến

Câu b:

gọi phương trình đường thẳng d dạng: \(y=ax+b\)

Xét tại A (-2;y1) :\(y_1=\frac{\left(-2\right)^2}{4}=1\)

Xét tạ B(4;y2) : \(y_2=\frac{4^2}{4}=4\)

do đó tọa độ đường thẳng A,B thỏa mãn đường thẳng d nên có hệ :

\(\hept{\begin{cases}-2a+b=1\\4a+b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=2\end{cases}}}\)

vậy phương trình d : \(y=\frac{1}{2}x+2\)

22 tháng 5 2015

a) (P) là parabol đi qua gốc toạ độ O(0; 0) ; điểm (1; 1/2) và điểm (-1;1/2)

b) A \(\in\) (P) => yA = \(\frac{1}{2}\). xA2 = \(\frac{1}{2}\). (-1)2 = \(\frac{1}{2}\)=> A (-1; \(\frac{1}{2}\))

B \(\in\) (P) => yB = \(\frac{1}{2}\).xB2 = \(\frac{1}{2}\).4 = 2 => B (2; 2)

+) đường thẳng có hệ số góc bằng \(\frac{1}{2}\) có dạng y = \(\frac{1}{2}\)x + b      (d)

\(\in\) d => yA = \(\frac{1}{2}\).xA + b => \(\frac{1}{2}\) = \(\frac{1}{2}\). (-1) + b => b = 1

Vậy đường thẳng (d) có dạng y = \(\frac{1}{2}\)x + 1

Nhận xét: yB = \(\frac{1}{2}\).xB + 1 => B \(\in\)  (d)

26 tháng 3 2021

a) Ta có bảng giá trị tương ứng x và y sau :

x-3-2-10123
y = 2x2 188202818

Quả parabol hơi xấu tí thông cảm =))

NV
23 tháng 2 2021

Ta có \(M\left(2;-1\right)\)

Gọi phương trình đường thẳng d qua M có dạng: \(y=ax+b\)

\(\Rightarrow-1=2a+b\Rightarrow b=-2a-1\)

\(\Rightarrow y=ax-2a-1\)

Để d cắt 2 trục tọa độ \(\Rightarrow a\ne\left\{0;-\dfrac{1}{2}\right\}\)

\(\Rightarrow A\left(\dfrac{2a+1}{a};0\right)\) ; \(B\left(0;-2a-1\right)\) \(\Rightarrow OA=\left|x_A\right|=\left|\dfrac{2a+1}{a}\right|\) ; \(OB=\left|y_B\right|=\left|2a+1\right|\)

Ta có: \(S_{OMA}=\dfrac{1}{2}\left|y_M\right|.OA=\dfrac{1}{2}\left|\dfrac{2a+1}{a}\right|\)

\(S_{OMB}=\dfrac{1}{2}\left|x_M\right|.OB=\left|2a+1\right|\)

\(\Rightarrow\dfrac{1}{2}\left|\dfrac{2a+1}{a}\right|=\left|2a+1\right|\Leftrightarrow\dfrac{1}{2\left|a\right|}=1\Rightarrow\left[{}\begin{matrix}a=\dfrac{1}{2}\\a=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

Phương trình: \(y=\dfrac{1}{2}x-2\)

12 tháng 9 2021

vì sao a lại khác -1/2 vậy ạ