K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

xin lỗi mk mới hok lớp 5

1 tháng 6 2016

còn mình mới học lớp 4

1.Từ điểm A ở ngoài đtròn (O) vẽ 2 tiếp tuyến AB và AC với đường tròn(O). Gọi M là trung điểm AB. Nối CM cắt đường tròn(O) tại E. AO cắt BC tại H. Tia AE cắt đường tròn (O) tại Da. Chứng Minh MB bình=ME.MC và CD//ABb. Vẽ OK vuông góc với ED tại K. Vẽ dây cung EN vuông góc với CK (N thuộc (O)). Cm B,O,N thẳng hàng2.Cho điểm M nằm ngoài đtròn (O). Vẽ 2 tiếp tuyến MA,MB...
Đọc tiếp

1.Từ điểm A ở ngoài đtròn (O) vẽ 2 tiếp tuyến AB và AC với đường tròn(O). Gọi M là trung điểm AB. Nối CM cắt đường tròn(O) tại E. AO cắt BC tại H. Tia AE cắt đường tròn (O) tại D
a. Chứng Minh MB bình=ME.MC và CD//AB
b. Vẽ OK vuông góc với ED tại K. Vẽ dây cung EN vuông góc với CK (N thuộc (O)). Cm B,O,N thẳng hàng
2.Cho điểm M nằm ngoài đtròn (O). Vẽ 2 tiếp tuyến MA,MB với đtròn. Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D), OM cắt AB và (O) lần lượt tại H và I.
a. Cm tg MAOB nội tiếp
b. Cm OH.OM+MC.MD=MO bình
c. Cm CI là tia pg của góc MCH
3. Từ điểm M nằm ngoài (O;R), vẽ 2 tiếp tuyến MA,MB và cát tuyến MCD với (O) (A,B là tiếp điểm và cát tuyến MCD nằm trong góc AMO, MC<MD). Gọi H là giao điểm của AB và OM
a) Cm tg MAOB nội tiếp, OM vuông góc AB
b) Cm AC.BD=AD.BC

0
18 tháng 5 2018

Ta có: \(OD//O'B\left(\perp AB\right)\)

\(\Rightarrow\frac{AO}{AO'}=\frac{OD}{O'B}=\frac{R}{R'}=\frac{OI}{O'M}=\frac{OI}{O'I}\)

 OI cắt O’I và A, I, M thẳng hàng ( gt ) nên suy ra OI // O’M \(\Rightarrow\widehat{DOI}=\widehat{BO'M}\)

Mà \(\widehat{BDI}=\frac{1}{2}\widehat{DOI}=\frac{1}{2}\)sđ cung DI và \(\widehat{BIM}=\frac{1}{2}\widehat{BO'M}=\frac{1}{2}\)sđ cung \(BM\Rightarrow\widehat{BDI}=\widehat{BIM}\)

Nên AM là tiếp tuyến của đường tròn ngoại tiếp của tam giác BDI ( đpcm )

18 tháng 5 2018

có vẽ hình ko ?

1. Cho 2 đường tròn (O;R) và (O';r) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC ($B\in (O), C\in (O')$)a. Tính góc BACb. Tính BC.c. Gọi D là gđ của CA với đường tròn (O) (D khác A). CMR 3 điểm B,O,D thẳng hàngd. Tính BA, CA2. Cho đ B nằm giữa A và Csao cho AB=14cm, BC=28cm. Vẽ về 1 phía của AC các nửa đường tròn tâm I,K,O có đường kính theo thứ tự AB, BC, AC.Tính bán kính...
Đọc tiếp

1. Cho 2 đường tròn (O;R) và (O';r) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC ($B\in (O), C\in (O')$)

a. Tính góc BAC

b. Tính BC.

c. Gọi D là gđ của CA với đường tròn (O) (D khác A). CMR 3 điểm B,O,D thẳng hàng

d. Tính BA, CA

2. Cho đ B nằm giữa A và Csao cho AB=14cm, BC=28cm. Vẽ về 1 phía của AC các nửa đường tròn tâm I,K,O có đường kính theo thứ tự AB, BC, AC.Tính bán kính đường tròn (M) tiếp xúc ngoài với các nửa đường tròn (I), (K), và tiếp xúc trong với nửa đường tròn (O).

3. Cho đường tròn (O) nội tiếp tam giác đều ABC. 1 tiếp tuyến của đường tròn cắt AB, AC theo thứ tự ở M và N.

a. Tính diện tích AMN biết BC=8cm, MN=3cm

b. CMR: $MN^2=AM^2+AN^2-AM.AN$

c*. Chứng minh rằng: $\frac{AM}{MB}+\frac{AN}{NC}=1$

0

a: Xét tứ giác IAOC có

\(\widehat{IAO}+\widehat{ICO}=90^0+90^0=180^0\)

=>IAOC là tứ giác nội tiếp

=>I,A,O,C cùng thuộc một đường tròn

b: Xét (O) có

IA,IC là tiếp tuyến

Do đó: IA=IC

=>I nằm trên đường trung trực của AC(1)

ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OI là đường trung trực của AC

=>OI\(\perp\)AC

c: Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

Ta có: OI là đường trung trực của AC

=>OI vuông góc với AC tại trung điểm của AC

mà OI cắt AC tại D

nên OI\(\perp\)AC tại D và D là trung điểm của AC

Xét tứ giác CDOE có

\(\widehat{CDO}=\widehat{CEO}=\widehat{ECD}=90^0\)

=>CDOE là hình chữ nhật

=>CO=DE=R

d: Xét ΔIAC có IA=IC

nên ΔIAC cân tại I

=>\(\widehat{IAC}=\widehat{ICA}\)

Ta có: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)MB tại C

=>ΔACM vuông tại C

Ta có: \(\widehat{IAC}+\widehat{IMC}=90^0\)(ΔACM vuông tại C)

\(\widehat{ICA}+\widehat{ICM}=\widehat{ACM}=90^0\)

mà \(\widehat{IAC}=\widehat{ICA}\)

nên \(\widehat{IMC}=\widehat{ICM}\)

=>IM=IC

mà IC=IA

nên IM=IA

=>I là trung điểm của MA

=>\(MA=2\cdot IC\)

Xét ΔABM vuông tại A có AC là đường cao

nên \(MC\cdot MB=MA^2\)

=>\(MC\cdot MB=\left(2\cdot IC\right)^2=4\cdot IC^2\)

=>\(IC^2=\dfrac{1}{4}\cdot MC\cdot MB\)

25 tháng 12 2017

O A B C H D E K F

a) Do AB và AC là các tiếp tuyến cắt nhau tại A nên áp dụng tính chất hai tiếp tuyến cắt nhau ta có: AB = AC và AH là phân giác góc BAC.

Xét tam giác cân ABC có AH là phân giác nên AH đồng thời là đường cao. Vậy thì AO vuông góc với BC tại H.

b) Xét tam giác AEC và ACD có : 

\(\widehat{A}\) chung

\(\widehat{ACE}=\widehat{ACD}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn một cung)

\(\Rightarrow\Delta AEC\sim\Delta ACD\left(g-g\right)\)

\(\Rightarrow\frac{AE}{AC}=\frac{AC}{AD}\Rightarrow AE.AD=AC^2\)

Xét tam giác vuông ACD, đường cao CH, ta có :

\(AH.AO=AC^2\)  (Hệ thức lượng)

Vậy nên ta có : AE.AD = AH.AO

c) Xét tam giác vuông ABO, đường cao BH, ta có: AH.AO = BO2

Do BO = DO nên AH.AO = OD2

Lại có \(\Delta AKO\sim\Delta FHO\left(g-g\right)\Rightarrow\frac{AO}{FO}=\frac{OK}{OH}\Rightarrow OK.OF=AO.OH\)

Vậy nên OK.OF = OD2 hay \(\frac{OK}{OD}=\frac{OD}{OF}\)

Vậy nên \(\Delta OKD\sim\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{FDO}=\widehat{DKO}=90^o\)

Vậy nên FD là tiếp tuyến của đường tròn (O).