Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi I là tiếp điểm của tiếp tuyến MN với đường tròn (O). Nối OI.
Ta có: ˆAOI+ˆBOI=180∘AOI^+BOI^=180∘ (hai góc kề bù)
OM là tia phân giác cảu góc AOI (tính chất hai tiếp tuyến cắt nhau)
Quảng cáo
ON là tia phân giác của góc BOI (tính chất hai tiếp tuyến cắt nhau)
Suy ra: OM ⊥ ON (tính chất hai góc kề bù)
Vậy ˆMON=90∘MON^=90∘
b) Ta có: MA = MI (tính chất hai tiếp tuyến cắt nhau)
NB = NI (tính chất hai tiếp tuyến cắt nhau)
Mà: MN = MI + IN
Suy ra: MN = AM + BN
c) Tam giác OMN vuông tại O có OI ⊥ MN (tính chất tiếp tuyến) theo hệ thức lượng trong tam giác vuông, ta có:
OI2=MI.NIOI2=MI.NI
Mà: MI = MA, NI = NB (chứng minh trên)
Suy ra: AM.BN=OI2=R2AM.BN=OI2=R2.
good luck!
Sử dụng tính chất hai tiếp tuyến
a, Ta có: AC = CM; BD = DM => AC+BD=CD
b, C O A ^ = C O M ^ ; D O M ^ = D O B ^
=> C O D ^ = 90 0
c, AC.BD = MC.MD = M O 2 = R 2
d, Gọi I là trung điểm của CD. Sử dụng tính chất trung tuyến ứng với cạnh huyền trong tam giác vuông và đường trung bình trong hình thang để suy ra đpcm
a: Xét (O) có
CD,CB là các tiếp tuyến
Do đó: CD=CB
=>C nằm trên đường trung trực của DB(1)
Ta có: OD=OB
=>O nằm trên đường trung trực của DB(2)
Từ (1) và (2) suy ra OC là đường trung trực của BD
=>OC\(\perp\)BD
b: Xét tứ giác OBCD có
\(\widehat{OBC}+\widehat{ODC}=90^0+90^0=180^0\)
=>OBCD là tứ giác nội tiếp
=>O,B,C,D cùng thuộc một đường tròn
c: Xét (O) có
\(\widehat{CDM}\) là góc tạo bởi tiếp tuyến DC và dây cung DM
\(\widehat{DAM}\) là góc nội tiếp chắn cung DM
Do đó: \(\widehat{CDM}=\widehat{DAM}\)
=>\(\widehat{CDM}=\widehat{CAD}\)
Xét ΔCDM và ΔCAD có
\(\widehat{CDM}=\widehat{CAD}\)
\(\widehat{DCM}\) chung
Do đó: ΔCDM đồng dạng với ΔCAD
=>\(\widehat{CMD}=\widehat{CDA}\)
a, Học sinh tự chứng minh
b, N E C ^ = C B E ^ = 1 2 s đ C E ⏜
=> DNEC ~ DNBE (g.g) => ĐPCM
c, DNCH ~ DNMB (g.g)
=> NC.NB = NH.NM = N E 2
DNEH ~ DNME (c.g.c)
=> N E H ^ = E M N ^
d, E M N ^ = E O M ^ (Tứ giác NEMO nội tiếp)
=> N E H ^ = N O E ^ => EH ^ NO
=> DOEF cân tại O có ON là phân giác => E O N ^ = N O F ^
=> DNEO = DNFO vậy N F O ^ = N E O ^ = 90 0 => ĐPCM