Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c.
Gọi K là trung điểm của BH
Chỉ ra K là trực tâm của tam giác BMI
Chứng minh MK//EI
Chứng minh M là trung điểm của BE (t.c đường trung bình)
a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC
HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA
b, Ta có K D C ^ = A O D ^ (cùng phụ với góc O B C ^ )
=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO
c, Ta có: M B A ^ = 90 0 - O B M ^ và M B C ^ = 90 0 - O M B ^
Mà O M B ^ = O B M ^ (∆OBM cân) => M B A ^ = M B C ^
=> MB là phân giác A B C ^ . Mặt khác AM là phân giác B A C ^
Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC
d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A
=> CA = AB = AP => A là trung điểm CK
Gọi I là giao điểm của MN và AC.
Ta có: \(\widehat{IHO}=\widehat{OEI}=90°\)
\(\Rightarrow\)Tứ giác EIHO nội tiếp đường tròn.
\(\Rightarrow\)Tâm của đường tròn ngoại tiếp ∆OHE nằm trên đường trung trực của EI.(*)
Ta có ∆AIH \(\approx\)∆AOE
\(\Rightarrow\)AH.AO = AE.AI (1)
Ta có: ∆AMB \(\approx\)AOM
\(\Rightarrow\)AM2 = AH.AO (2)
Ta lại có: ∆ABM \(\approx\)∆AMC
\(\Rightarrow\)AM2 = AB.AC (3)
Từ (1), (2), (3) \(\Rightarrow\)AE.AI = AB.AC
Vì A,B,C,E cố định nên I cố định (**)
Từ (*), (**) suy ta tâm đường tròn ngoại tiếp ∆OHE nằm trên đường trung trực của EI.
PS: không chứng minh được nó nằm trên đường tròn nha b. Hình tự vẽ.