K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Ta có: Một phần đường kính OA vuông góc dây BC

⇒ AB = AC ⇒ sđ cung AB = sđ cung AC

⇒ ∠(BAH) = ∠(ABC) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung chắn 2 cung bằng nhau)

Tứ giác ABMC nội tiếp (O)

⇒ ∠(NMC) = ∠(ABC) (2 góc nội tiếp cùng chắn cung AC)

Do đó: ∠(NMC) = ∠(BAH)

4 tháng 10 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) 2 tiếp tuyến HA và HB cắt nhau tại H

⇒ ΔHAB cân tại H ⇒ ∠(BAH) = ∠(HBA)

Theo ý b) ∠(NMC) = ∠(BAH)

⇒ ∠(NMC) = ∠(HBA)

Xét tứ giác MBND có: ∠(NMC) = ∠(HBA)

⇒ 2 đỉnh M và B cùng nhìn cạnh ND dưới 1 góc bằng nhau

⇒ MBND là tứ giác nội tiếp.c) 2 tiếp tuyến HA và HB cắt nhau tại H

⇒ ΔHAB cân tại H ⇒ ∠(BAH) = ∠(HBA)

Theo ý b) ∠(NMC) = ∠(BAH)

⇒ ∠(NMC) = ∠(HBA)

Xét tứ giác MBND có: ∠(NMC) = ∠(HBA)

⇒ 2 đỉnh M và B cùng nhìn cạnh ND dưới 1 góc bằng nhau

⇒ MBND là tứ giác nội tiếp.

18 tháng 10 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Xét tứ giác MBND nội tiếp có:

∠(BDN) = ∠(BMN) (2 góc nội tiếp cùng chắn cung BN)

Xét tứ giác ABMC nội tiếp (O) có:

∠(ABC) = ∠(BMN) (2 góc nội tiếp cùng chắn cung bằng nhau )

⇒ ∠(BDN) = ∠(ABC)

Mà 2 góc này ở vị trí so le trong

⇒ ND // BC

Mà BC ⊥ OA ⇒ ND ⊥ OA

25 tháng 12 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tứ giác OBHA có:

∠(OBH) = 90 0  ( BH là tiếp tuyến của (O)

∠(OAH) = 90 0 (AH là tiếp tuyến của (O)

⇒ ∠(OBH) + ∠(OAH) = 180 0

⇒ Tứ giác OBHA là tứ giác nội tiếp

21 tháng 12 2020

PS. Em đã làm được rồi ạ.

NV
21 tháng 12 2020

\(ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\left\{{}\begin{matrix}\widehat{ACB}+\widehat{BCH}=90^0\\\widehat{CBH}+\widehat{BCH}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{ACB}=\widehat{CBH}\)

\(\Rightarrow\widehat{ABC}=\widehat{CBH}\)

13 tháng 12 2023

a: Xét ΔOBM vuông tại B có BI là đường cao

nên \(OI\cdot OM=OB^2\)

=>\(OM\cdot2=5^2=25\)

=>OM=25/2=12,5(cm)

Ta có: ΔBIO vuông tại I

=>\(IB^2+IO^2=BO^2\)

=>\(IB^2+2^2=5^2\)

=>\(IB^2=21\)

=>\(IB=\sqrt{21}\left(cm\right)\)

Ta có: ΔOBC cân tại O

mà OI là đường cao

nên I là trung điểm của BC và OI là phân giác của góc BOC

Ta có: I là trung điểm của BC

=>\(BC=2\cdot BI=2\sqrt{21}\left(cm\right)\)

c: Xét ΔOBM và ΔOCM có

OB=OC

\(\widehat{BOM}=\widehat{COM}\)

OM chung

Do đó: ΔOBM=ΔOCM

=>\(\widehat{OBM}=\widehat{OCM}=90^0\)

=>MC là tiếp tuyến của (O)

23 tháng 11 2018

a.Xét 2 tam giác vuông ABO và ACO có
BO=CO (đều là BK đường tròn)
AB=AC (Độ dài hai tiếp tuyến của một đường tròn cùng xuất phát từ một điểm bên ngoài đường tròn thì bằng nhau)
góc ABO=góc ACO=90 độ
Suy ra tam giác ABO=tam giác ACo (c.g.c) suy ra góc BAO=góc CAO
Tam giác ABC cân tại A nên AO vừa là phân giác của góc BAC vừa là đường cao của tam giác ABC hạ từ A xuống BC vậy AO vuông góc với BC

c,Ta có góc BCO=góc CAO (cùng phụ với góc AOC)
góc CAO=góc BAO
suy ra góc BCO=góc BAO (1)
Xét tam giác vuông BCH có góc CBH+góc BCO=90 độ (2)
Ta có góc ABC+góc BAO=90 độ (3)
Từ (1) (2) (3) suy ra góc CBH=góc ABC nên BC là phân giác của góc ABH

mình chỉ biết làm câu a và c thôi mong bạn thông cảm

26 tháng 11 2023

c: Xét (O) có

ΔMKD nội tiếp

MD là đường kính

Do đó: ΔMKD vuông tại K

=>MK\(\perp\)KD tại K

=>MK\(\perp\)AD tại K

Xét ΔMDA vuông tại M có MK là đường cao

nên \(AK\cdot AD=AM^2\left(1\right)\)

Xét ΔAOM vuông tại M có MH là đường cao

nên \(AH\cdot AO=AM^2\left(2\right)\)

Từ (1) và (2) suy ra \(AK\cdot AD=AH\cdot AO\)