K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn nào giúp mình bài này với =))1.  Cho đường tròn (O;R) và (O' ; R') tiếp xúc ngoài tại M ( R > R' ) .Vẽ các đường kính MOA và MO'B . Gọi H là trung điểm của AB , vẽ dây CD của đương tròn (O) vuông góc với AB tại H.a) Tứ giác ACBD là hình gì ? b) Gọi I là giao điểm của DB với đường tròn (O') . Chứng minh CM vuông góc với DB . Suy ra 3 điểm C, M, I thẳng hàng c) Chứng minh HI là tiếp tuyến của...
Đọc tiếp

Bạn nào giúp mình bài này với =))

1.  Cho đường tròn (O;R) và (O' ; R') tiếp xúc ngoài tại M ( R > R' ) .Vẽ các đường kính MOA và MO'B . Gọi H là trung điểm của AB , vẽ dây CD của đương tròn (O) vuông góc với AB tại H.

a) Tứ giác ACBD là hình gì ? 

b) Gọi I là giao điểm của DB với đường tròn (O') . Chứng minh CM vuông góc với DB . Suy ra 3 điểm C, M, I thẳng hàng 

c) Chứng minh HI là tiếp tuyến của đường trong ( O')

2. Cho tam giác OAO' vuông tại A ( O'A < OA ) . Vẽ hai đường tròn ( O; OA ) và (O' ; O'A ).

a) Chứng minh 2 đường trong (O) và (O') cắt nhau 

b) Gọi B là giao điểm ( khác A ) của 2 đường tròn ( O ) và (O') . Chứng minh đường thẳng OB là tiếp tuyến của đường tròn (O')

c) Gọi I là trung điểm của OO' và C là điểm đối xứng của A qua I . Chứng minh tứ giác OO'BC là hình thang cân .

0

a) Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

4 tháng 10 2017

a, BHCK có I là trung điểm hai đường chéo

b, Ta có ∆ABK, ∆ACK vuông tại B và C nên A,B,K,C nằm trên đường tròn đường kính AK

c, Ta có OI là đường trung bình của ∆AHK => OI//AH

d, Gọi AH cắt BC tại M. Ta có BE.BA = BM.BC và CA.CD = CM.BC => ĐPCM

a: Xét tứ giác BHCK có

I là trung điểm chung của BC và HK

=>BHCK là hình bình hành

b: BHCK là hbh

=>BH//CK và BK//CH

=>BK vuông góc AB và CK vuông góc CA

góc ABK=góc ACK=90 độ

=>ABKC nội tiếp đường tròn đường kính AK

=>O là trung điểm của AK

c: Xét ΔKAH có

KO/KA=KI/KH=1/2

nên OI//AH

d: gọi giao của AH với BC là F

=>AH vuông góc BC tại F

Xét ΔBEC vuông tại E và ΔBFA vuông tại F có

góc B chung

=>ΔBEC đồng dạng với ΔBFA

=>BE/BF=BC/BA

=>BE*BA=BF*BC

Xét ΔCDB vuông tại D và ΔCFA vuông tại F có

góc C chung

=>ΔCDB đồng dạng với ΔCFA

=>CD/CF=CB/CA
=>CD*CA=CF*CB

=>BE*BA+CD*CA=BC^2

1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR  giao điểm hai đường chéo nằm trên 1 đường trong cố định2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động3. Cho (O,R) BC là dây cố định. A là  1 điểm di động trên (O,R). Lấy M đối xứng...
Đọc tiếp

1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR  giao điểm hai đường chéo nằm trên 1 đường trong cố định

2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động

3. Cho (O,R) BC là dây cố định. A là  1 điểm di động trên (O,R). Lấy M đối xứng với C qua trung điểm I của AB. Hỏi M di động trên đường nào khi A di động

4.  Cho A di chuyển trên (O,R) đường kính BC gọi M đối xứng với A qua B, H là hình chiếu của A trên BC, I là trung điểm HC

a. CMR M chuyển động trên (O,R) 1 đường thẳng tròn cố định 

b. CMR tam giác AHM  đồng dạng tam giác CIA

c. CMR MH vuông góc AI

d MH cắt (O) tại E và F đường thẳng AI cắt (O) tại G. CMR Tổng bình phương các cạnh  của tứ giác AEGF ko đổi

0