Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
=>AEHF là tứ giác nội tiếp
=>A,E,H,F cùng thuộc một đường tròn
2: Kẻ tiếp tuyến Ax tại A của (O)
Xét (O) có
\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB
nên \(\widehat{xAB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)
Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn cung BA
Do đó: \(\widehat{ACB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)
=>\(\widehat{xAB}=\widehat{ACB}\left(1\right)\)
Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>\(\widehat{AEF}=\widehat{AHF}\)
mà \(\widehat{AHF}=\widehat{ACB}\left(=90^0-\widehat{HAC}\right)\)
nên \(\widehat{AEF}=\widehat{ACB}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{xAB}=\widehat{AEF}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ax//EF
Ta có: Ax//EF
OA\(\perp\)Ax
Do đó: OA\(\perp\)EF
a: H và I đối xứng nhau qua AB
nên AB vuông góc với HI tại trung điểm của HI
=>AB là phân giác của góc IAH(1)
H đối xứng K qua AC
nên AC vuông góc HK tại trung điểm của HK
=>AC là phân giác của góc HAK(2)
Từ (1), (2) suy ra góc IAK=2*90=180 độ
=>I,A,K thẳng hàng
b: 1/BH^2-1/AN^2=1/AB^2
=>(AN^2-BH^2)/(AN^2*BH^2)=1/AB^2
CA/AN=CH/HB
=>AN/CA=HB/HC=k
=>AN=k*CA; HB=k*HC
\(\dfrac{AN^2-BH^2}{AN^2\cdot BH^2}=\dfrac{k^2\cdot CA^2-k^2\cdot HC^2}{k^2\cdot CA\cdot HC}=\dfrac{CA^2-HC^2}{CA\cdot HC}=\dfrac{AH^2}{AC\cdot HC}=\dfrac{HB}{AC}\)
\(\dfrac{1}{AB^2}=\dfrac{HB}{AC}\Leftrightarrow AB^2\cdot HB=AC\)
=>\(BH^2\cdot HC=AC\Leftrightarrow BH^2=\dfrac{AC}{HC}\)(vô lý)
=>Đề câu b sai nha bạn