Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ nha!
a) Ta có: OB=OA=AB=R nên ΔOAB đều.
b) ta có góc BMC=90⇒góc BMD=90 (kề bù)
xét ΔBMD có: \(\widehat{MBD}+\widehat{MDB}=90^O\)
do đó \(\widehat{MDB}\) = \(\widehat{AIB}\)
Vậy tứ giác AIMD nội tiếp đường tròn đường kính DI
c) ta có \(\widehat{ADI}=\widehat{AMI}\) (2 góc nội tiếp cùng chắn cung AI của đường tròn đường kính DI)
mà \(\widehat{AMB}=\widehat{ACB}\) ( 2 góc nội tiếp cùng chắn cung AB của đường tròn tâm O)
ΔABC vuông tại A, có \(\widehat{ABC}\)=60o⇒ \(\widehat{ACB}\) =30o
Vậy \(\widehat{ADI}\) =30o
d) vì \(\widehat{ABM}\) = 45o⇒ΔDMB vuông cân tại M. ta tính được MB= 2R.sin75o
⇒DB⇒AD=BD - AB
a: góc CAB=góc CMB=1/2*180=90 độ
=>CA vuông góc DB và BM vuông góc DC
góc DAI+góc DMI=180 độ
=>DAIM nội tiếp
b: Sửa đề: AI*IC=BI*IM
Xét ΔIAB vuông tại A và ΔIMC vuông tại M có
góc AIB=góc MIC
=>ΔIAB đồng dạng với ΔIMC
=>IA/IM=IB/IC
=>IA*IC=IM*IB
c: góc ADI=90 độ-góc DBC
góc ACB=90 độ-góc DBC
=>góc ADI=góc ACB=1/2*góc AOB
Em kham khảo link này nhé.
Câu hỏi của Trần Đức Thắng - Toán lớp 9 - Học toán với OnlineMath
a. Ta có : \(\hat{BDM}=90^o\) (kề bù với \(\hat{BDA}\) nội tiếp chắn nửa đường tròn).
\(\hat{BCM}=90^o\left(gt\right)\)
Vậy : BCMD nội tiếp được một đường tròn (\(\hat{BDM}+\hat{BCM}=180^o\)) (đpcm).
b. Xét △ADB và △ACM :
\(\hat{ADB}=\hat{ACM}=90^o\)
\(\hat{A}\) chung
\(\Rightarrow\Delta ADB\sim\Delta ACM\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AM}\Leftrightarrow AD.AM=AB.AC\) (đpcm).
c. Ta có : \(OD=OB=BD=R\) ⇒ △ODB đều.
\(\Rightarrow S_{\Delta ODB}=\dfrac{\sqrt{3}}{4}R^2\)
\(\hat{BOD}\) là góc ở tâm chắn cung BD \(\Rightarrow sđ\stackrel\frown{BC}=\hat{BOD}=60^o\) (do △ODB đều).
\(S_{ODB}=\dfrac{\text{π}R^2n}{360}=\dfrac{\text{π}R^2.60}{360}=\dfrac{\text{π}R^2}{6}\)
\(\Rightarrow S_{vp}=S_{ODB}-S_{\Delta ODB}=\dfrac{\text{π}R^2}{6}-\dfrac{\sqrt{3}}{4}R^2\)
\(=\dfrac{\text{π}}{6}R^2-\dfrac{\sqrt{3}}{4}R^2\)
\(=\dfrac{2\text{π}-3\sqrt{3}}{12}R^2\)