Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ OM vuông góc CD
=>OM//AK//LB
Xét hình thang ABLK có
O là trung điểm của AB
OM//AK//LB
Do đó: M là trung điểm của LK
=>ML=MK
ΔOCD cân tại O
mà OM là đường cao
nên M là trung điểm của CD
=>MC=MD
MD+DL=ML
MC+CK=MK
mà ML=MK và MC=MD
nên DL=CK
Xét (O) có
ΔACB nội tiếp
AB là đường kính
=>ΔACB vuông tại C
ΔOCD cân tại O
mà OI là đường cao
nên I là trung điểm của CD
=>IC=ID=CD/2=8cm
Xét ΔCAB vuông tại C cso CI là đường cao
nên CI^2=IA*IB
=>8^2=6*IB
=>IB=64/6=32/3(cm)
AB=IB+IA=32/3+6=50/3(cm)
=>R=50/3:2=25/3(cm)
góc AKB=1/2*sđ cung AB=90 độ
Xét ΔNKI vuông tại K và ΔNMB vuông tại M có
góc N chung
=>ΔNKI đồng dạng với ΔNMB
=>NK/NM=NI/NB
=>NM*NI=NK*NB
Xét ΔNDK và ΔNBC có
góc NDK=góc NBC
góc N chung
=>ΔNDK đồng dạng với ΔNBC
=>ND/NB=NK/NC
=>ND*NC=NK*NB=NM*NI
\(ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\left\{{}\begin{matrix}\widehat{ACB}+\widehat{BCH}=90^0\\\widehat{CBH}+\widehat{BCH}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{ACB}=\widehat{CBH}\)
\(\Rightarrow\widehat{ABC}=\widehat{CBH}\)
Ta có: ^AKB là góc nội tiếp chắn nửa đường tròn (O)
=> ^AKB = 90 (t/c góc nội tiếp ).
Xét tứ giác HKBI ta có:
^HKI=900 (do CD⊥AB tại I)
=> ^HKI + ^ HIB=180.
=> Tứ giác BKHI là tứ giác nội tiếp (dhnb).
b) Xét TGiac AHI và Tgiac AKB có:
^AKB = ^AHI ( do cùng =90 độ)
^A chung
=> tam giác AHI đồng dạng với AKB (g - g)
=> AH/AB = AI/AK (cặp cạnh tg ứg tỉ lệ)
=> AH.AK = AI.AB
Mà AI; AB cố định
=> AH.AK không phụ thuộc vào vị trí điểm K (đpcm)
mk chưa hok lớp 9