K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

Câu a : Ta có : \(\Delta OMA\) cân tại O và \(AC=MC\) nên \(OC\perp AM\) hay \(\widehat{OCN}=90^0\) .

Xét tứ giác OBNC ta có :

\(\widehat{OCN}=90^0\) ( cmt )

\(\widehat{OBN}=90^0\) ( Tiếp tuyến vuông góc với bán kính )

\(\Rightarrow\widehat{OCN}+\widehat{OBN}=180^0\) hay OBNC là tứ giác nội tiếp (đpcm )

Câu b : Xét tam giác AND ta có :

AB là đường cao xuất phát từ đỉnh A .

DC là đường cao xuất phát từ đỉnh D .

Mà hai đường cao này cắt nhau tại O cho nên O là trực tâm của \(\Delta AND\)

NO cắt AD suy ra NO là đường cao của tam giác AND \(\Rightarrow NO\perp AD\)

Câu c : Ta có : \(\left\{{}\begin{matrix}\widehat{CAO}+\widehat{ANB}=90^0\\\widehat{CDN}+\widehat{ANB}=90^0\end{matrix}\right.\Rightarrow\widehat{CAO}=\widehat{CDN}\)

Xét tam giác CAO và tam giác CDN ta có :

\(\left\{{}\begin{matrix}\widehat{ACO}=\widehat{DCN}\left(=90^0\right)\\\widehat{CAO}=\widehat{CDB}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta CAO\sim\Delta CDN\left(g-g\right)\)

\(\Rightarrow\frac{CA}{CD}=\frac{CO}{CN}\Rightarrow CA.CN=CO.CD\) ( đpcm )

Câu d : Xét tam giác AMB và tam giác ABN ta có :

\(\left\{{}\begin{matrix}\widehat{BAM}:chung\\\widehat{AMB}=\widehat{ABN}\left(=90^0\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AMB\sim\Delta ABN\left(g-g\right)\)

\(\Rightarrow\frac{AM}{AB}=\frac{AB}{AN}\Rightarrow AM.AN=AB^2=4R^2\)

Áp dụng BĐT Cô - si ta có : \(2AM+AN\ge2\sqrt{2AM.AN}=2\sqrt{8R^2}=4R\sqrt{2}\)

Vậy GTNN của 2AM + AN là \(4R\sqrt{2}\) khi và chỉ khi M là trung điểm của AN

16 tháng 3 2020

anh có hình ko ạ

26 tháng 3 2019

a) OBNC có NCO=OBN=90 nên OBNC là tứ giác nội tiếp

b) Xét tam giác ADC  có AB,DC là các đường cao 

mà AB cắt DC tại O 

suy ra O là trực tâm của tam giác ADC

nên NO vuông góc với AD 

c)

CONB là tứ giác nôi tiếp nên COA=CNB

Xét tam giác ACO và tam giác DCN 

COA=CNB(cmt)

ACO=NCD=90

nên tam giác ACO đồng dạng với tam giác DNC 

nên CA.CN=CO.CD

Còn câu d mk chịu

12 tháng 7 2020

Cho em hỏi chị ở dưới câu a sao NCO bằng 90° vậy ạ

a) Xét (O) có 

\(\widehat{AMB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{AMB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{FMB}=90^0\)

Xét tứ giác BCFM có

\(\widehat{FCB}\) và \(\widehat{FMB}\) là hai góc đối

\(\widehat{FCB}+\widehat{FMB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BCFM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

22 tháng 12 2016

giúp mình đi nhá!!! cần gấp á!!

23 tháng 12 2016

chả ai quan tâm đâu :v toán chả ai giải :v