Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A',B'\)lần lượt là hình chiếu vuông góc của A, B lên MN, H là trung điểm của MN
\(\Rightarrow OH\perp MN\)
Xét hình thang \(AA'B'B\)có OH là đường trung bình nên:
\(OH=\frac{1}{2}\left(AA'+BB'\right)=\frac{R\sqrt{3}}{2}\)
\(MH=\sqrt{OM^2-OH^2}=\sqrt{R^2-\frac{3R^2}{4}}=\frac{R}{2}\)
\(\Rightarrow MN=2MH=R\)
do đó : \(S_{AKB}=\frac{1}{2}.AB.KP=R.KP\le\sqrt{3}R^2\)
Dấu "=" xảy ra <=> MN//AB hay \(\Delta AKB\)đều
b) bạn tự cm đc chứ ??? :))))
b,Tứ giác KMIN nội tiếp trong đường tròn đường kính KI, gọi Q là tâm đường tròn --> Q trung điểm KI ,
Vì MN = R , \(\Delta MNO\) đều
=> góc MAN = 30 độ
Trong tg vuông AKN có \(\widehat{MAN}\) = 300 => góc MKN = 60 độ -
=>góc MQN = 120 độ, vẽ QR vuông góc MN => R trung điểm MN => MR = R/2, trong tg MQR nửa đều
=> QR = MQ/2 và MR = R/2
=> MQ = \(R.\frac{\sqrt{3}}{3}\) --> Bán kính đường tròn = MQ =\(R.\frac{\sqrt{3}}{3}\)
Do I là trực tâm của tam giác KAB nên K, I, H thẳng hàng.
Tứ giác AMIH nội tiếp nên \(\widehat{MHI}=\widehat{MAI}\).
Tương tự, \(\widehat{NHI}=\widehat{NBI}\).
Lại có \(\widehat{MAI}=\widehat{NBI}=90^o-\widehat{AKB}\) nên \(\widehat{MHI}=\widehat{NHI}\).
Vậy HK là phân giác của góc MHN.