Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AMB=1/2*sđ cung AB=90 độ
góc FEB+góc FMB=180 độ
=>FMBE nội tiếp
b: Xét ΔKAB có
AM,KE là đường cao
KE cắt AM tại F
=>F là trực tâm
=>BF vuông góc AK
a) Ta có
C A B ⏜ = 90 0 O H C ⏜ = 90 0 ⇒ C A B ⏜ + O H C ⏜ = 180 0
Vậy tứ giác AOHC nội tiếp.
b) Ta có C A D ⏜ = A E C ⏜ , A C E ⏜ chung suy ra Δ A C D ~ Δ E C A (g.g)
⇒ C A C E = A D A E ⇒ A C . A E = A D . C E
c) Từ E vẽ đường thẳng song song với MN cắt cạnh AB tại I và cắt cạnh BD tại F ⇒ H E I ⏜ = H C O ⏜ .
Vì tứ giác AOHC nội tiếp ⇒ H A O ⏜ = H C O ⏜ = H E I ⏜ .
Suy ra tứ giác AHIE nội tiếp ⇒ I H E ⏜ = I A E ⏜ = B D E ⏜ ⇒ H I / / B D .
Mà H là trung điểm của DE=> I là trung điểm của EF. Có EF//MN và IE= IF
=> O là trung điểm của đoạn thẳng MN.
Suy ra tứ giác AMBN là hình bình hành => AM//BN.
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
a) Ta có \(\widehat{BOM}=sđ\stackrel\frown{BM}\) (đ/lí góc ở tâm)
Mà \(\stackrel\frown{BM}=120^o=>\widehat{BOM}=120^o\)
Vì \(\widehat{BOM}+\widehat{AOM}=180^o=>\widehat{AOM}=60^o\)
Xét \(\Delta AOM\) có
OA = OM (bán kính)
\(\widehat{AOM}=60^o\left(cmt\right)\)
\(=>\Delta OAM\) đều (dhnb tam giác đều)
b) +) Ta có \(\widehat{AMB}=90^o\) (góc nội tiếp chắn nửa đường tròn)
mà \(\Delta OAM\) đều (cmt) \(=>\widehat{OAM}=60^o\)
\(=>\widehat{ABM}=30^o\)
+) Vì R = 3 cm (gt) => OA = OB = 3 cm => AB = 6cm
Xét \(\Delta AMB\) vg tại A
\(=>AB^2=AM^2+BM^2\)
\(=>6^2=3^2+BM^2\)
\(=>BM=3\sqrt{3}\)