Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đi chứng minh công thức tổng quát: \(f\left(n\right)=\frac{2n+1+\sqrt{n\left(n+1\right)}}{\sqrt{n}+\sqrt{n+1}}=\left(n+1\right)\sqrt{n+1}-n\sqrt{n}\)
Thật vậy: \(\left[\left(n+1\right)\sqrt{n+1}-n\sqrt{n}\right]\left(\sqrt{n}+\sqrt{n+1}\right)=\left(n+1\right)\sqrt{n\left(n+1\right)}-n^2+\left(n+1\right)^2-n\sqrt{n\left(n+1\right)}=2n+1+\sqrt{n\left(n+1\right)}\)Áp dụng, ta được: \(f\left(1\right)+f\left(2\right)+...+f\left(2020\right)=\left(2\sqrt{2}-1\sqrt{1}\right)+\left(3\sqrt{3}-2\sqrt{2}\right)+\left(4\sqrt{4}-3\sqrt{3}\right)+...+\left(2021\sqrt{2021}-2020\sqrt{2020}\right)=2021\sqrt{2021}-1\)
Đề sai . Với m = n = 1 thì
\(VT-VP=\left|1-\sqrt{2}\right|-\frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{2}-1-\frac{\sqrt{3}-\sqrt{2}}{3-2}\)
\(=\sqrt{2}-1-\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{2}-\left(1+\sqrt{3}\right)\)
Dễ thấy \(2\sqrt{2}>1+\sqrt{3}\)Nên VT - VP > 0
=> VT > VP
=> Đề sai :3
Nhận xét: \(\left(n+1\right)\sqrt{n}=\sqrt{\left(n+1\right)^2n}=\sqrt{\left(n+1\right)n\left(n+1\right)};n\sqrt{n+1}=\sqrt{n^2\left(n+1\right)}=\sqrt{n.n\left(n+1\right)}\)
=> \(\left(n+1\right)\sqrt{n}>n\sqrt{n+1}\) => \(2.\left(n+1\right)\sqrt{n}>\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\)
=> \(\frac{2}{2.\left(n+1\right)\sqrt{n}}<\frac{2}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{2}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)
=> \(\frac{1}{\left(n+1\right)\sqrt{n}}<\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}.\left(\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\right)}=2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng ta có:
\(\frac{1}{2\sqrt{1}}<2.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right)\)
....
\(\frac{1}{3\sqrt{2}}<2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)
\(\frac{1}{\left(n+1\right)\sqrt{n}}<2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
=> A < \(2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(1-\frac{1}{\sqrt{n+1}}\right)<2\)
Vậy A < 2
Ta có:
\(\frac{1}{\left(n-1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)<2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Dễ dàng giải tiếp bài toán
Ta có: \(a_n=1+\frac{2^n\left[1.3.5...\left(2n-1\right)\right]}{\left(n+5\right)\left(n+6\right)...\left(2n\right)}\)
\(=1+\frac{2^n\left(2n\right)!}{\left[2.4.6..\left(2n\right)\right]\left[\left(n+5\right)\left(n+6\right)..\left(2n\right)\right]}\)
\(=1+\frac{\left(2n\right)!}{n!\left(n+5\right)\left(n+6\right)...\left(2n\right)}\)
\(=1+\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\)
mặt khác \(1+\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)=\left(n^2+5n+5\right)^2\)
do đó an luôn là SCP
Ta có: \(VT=\sqrt{\left(2n+1\right)^2}+\sqrt{4n^2}=\sqrt{\left(2n+1\right)^2}+\sqrt{\left(2n\right)^2}\)
\(=\left|2n+1\right|+\left|2n\right|\)
Vì \(n\inℕ\)\(\Rightarrow2n+1>0\); \(2n\ge0\)
\(\Rightarrow\left|2n+1\right|=2n+1\)và \(\left|2n\right|=2n\)
\(\Rightarrow VT=2n+1+2n=4n+1\)
Ta có: \(VP=\left(2n+1\right)^2-4n^2=\left(2n+1\right)^2-\left(2n\right)^2\)
\(=\left(2n+1-2n\right)\left(2n+1+2n\right)=4n+1\)
\(\Rightarrow VT=VP\)\(\Rightarrowđpcm\)