Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số chính phương hay còn gọi là số hình vuông là số tự nhiên có căn bậc 2 là mộtsố tự nhiên, hay nói cách khác, số chính phương là bình phương (lũy thừa bậc 2) của một số tự nhiên khác. Số chính phương hiển thị diện tích của một hình vuông có chiều dài cạnh bằng số nguyên kia .
ta có đây là một dãy cac số lẻ , mà chắc chắn sẽ phải có một số số chính phương trong dãy như :
9 ; 81 ; 49 ; 25 ; ...........
vô số các số chính phương đó sẽ nằm vào 3 số tự nhiên liên tiếp , nên trong 3 số , một số lúc sẽ có còn đôi lúc là không có số chính phương trong 3 số tự nhiên liên tiếp .
hay còn cách khác để xác định , đó là 2 cách sau :
- xác định bằng ví dụ
- sử dụng định lý
cách thứ nhất ( xác định bằng ví dụ ) , ta phải làm ít nhất 3 ví dụ như sau :
1 , 3 , 5
7 , 9 , 11
81 , 83 , 85
- thực hiện 1 trong 2 cách để đưa ra kết quả .
Kết luận : đôi khi , trong 3 số nguyên liên tiếp 2p - 1 ; 2p ; 2p + 1 sẽ có số chính phương .
còn khi là 2p thì sẽ không có đâu , vì p tận cùng là 5 , 2p tận cùng là 0 , không bao giờ có 2p là số chính phương , vì 2p có tận cùng là 0 , bắt buộc cơ số là 10 , 100 , 1000 , ........... nên không thể .
có gì sai sữa giúp tớ nhé .
Mình ra rồi nhé bạn,chờ xíu mình C/M cho. Đang bấm giữa chừng thì tự nhiên lỡ tay bấm nút thoát :|
\(2n+1=a^2\)
Xét a chẵn : \(a^2=\left(2k\right)^2=4k^2\)
\(2n+1=4k^2\Rightarrow2n=4k^2-1\)mà \(4k^2-1\)là số lẻ nên không tồn tại 2n lẻ
Xét a lẻ : \(a^2=\left(2k+1\right)^2=4k^2+4k+1\)
\(\Rightarrow2n=4k^2+4k=k\left(4k+4\right)=4\left(k^2+k\right)\)là số chẵn
\(\Rightarrow\)n là số chẵn
Vì n là số chẵn nên 3a+1 là số lẻ
\(\Rightarrow3n+1=\left(2p+1\right)^2\)
\(\Rightarrow2n+1+3n+1+1=\left(2k+1\right)^2+\left(2p+1\right)^2+1=5n+3\)
Xét \(2n+1< 3n+1\Leftrightarrow\left(2k+1\right)^2< \left(2p+1\right)^2\)
Vì cả \(2n+1\)và \(3n+1\)đều là số lẻ nên....(Bí)
a) A=(n^2-n+1)^2-1=> A không thể chính phuong
=> đề có thể là: \(A=n^4-2n^3+3n^2-2n+1\) Hoặc chứng minh A không phải số phương
b)
23^5 tận cùng 3
23^12 tận cùng 1
23^2003 tận cùng 7
=>B Tận cùng là 1 => B là số lẻ
23^5 chia 8 dư 7
23^12 chia 8 dư 1
23^2003 chia 8 dư 7
(7+1+7=15)
=> B chia 8 dư 7
Theo T/c số một số cp một số chính phương lẻ chỉ có dạng 8k+1=> B không phải số Cp