K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :

TH1 : \(2n-1=3u^2;2n+1=v^2\)

TH2 : \(2n-1=u^2;2n+1=3v^2\)

TH1 :

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )

Còn lại TH2 cho ta \(2n-1\)là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)

TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )

13 tháng 4 2021

Cho mình hỏi ở chỗ câu b): Vì sao 2n-1=3p^2 và 2n+1=q^2 vậy ạ?

6 tháng 10 2021

a) Từ giả thiếtta có thể đặt :  \(n^2-1=3m\left(m+1\right)\)  với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\) nên dẫn đến :

 \(TH1:2n-1=3u^2;2n+1=v^2\)

\(TH2:2n-1=u^2;2n+1=3v^2\)

\(TH1:\)

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2=2\left(mod3\right)\)

Còn lại TH2 cho ta  \(2n-1\) là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

\(TH1:\Rightarrow\hept{\begin{cases}2n-1=3p^2\\2n+1=3q\end{cases}}\)

\(TH2:\Rightarrow\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ  \(PT\Leftrightarrow q^2=3p^2+2=2\left(mod3\right)\) ( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ  \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\) ( dpcm )

13 tháng 11 2022

 ơ kìa, sao biết 2n - 1 và 2n + 1 nguyên tố cùng nhau

\(S=\left[\left(2n+1-1\right):2+1\right]\times\left(2n+1+1\right):2\)

\(S=\left(n+1\right)\times\left(2n+2\right):2\)

\(S=\left(n+1\right)\times\left(n+1\right)\)

\(S=\left(n+1\right)^2\)( dpcm )

30 tháng 5 2018

Xin lỗi đợi tao một lát nữa đi.

25 tháng 1 2018

chứng minh bài này bằng phản chứng

phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được

\(\left(n+1\right)^2n^2\left[\left(n-1\right)^2+1\right]=y^2\)

muốn pt trên đúng thi \(\left(n-1\right)^2+1\)cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0

mà với n>1 =>n-1>0=>mâu thuẫn

Phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được

(�+1)2�2[(�−1)2+1]=�2

Muốn pt trên đúng thi (�−1)2+1cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0

Mà với n>1 =>n-1>0=>mâu thuan

30 tháng 1 2015

Quên cách làm thôi bn .. nếu bn bk thì giải ra đi 
Ở đây là chỗ có thể đặt câu hỏi cũng như trả lời mak