K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi d=UCLN(4n+8;2n+3)

\(\Leftrightarrow4n+8-4n-6⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+3 là số lẻ

nên d=1

=>ĐPCM

b: Gọi a=UCLN(7n+4;9n+5)

\(\Leftrightarrow63n+36-63n-35⋮a\)

=>a=1

=>ĐPCM

8 tháng 4 2022

Me cảm lan bẹn!

a:

Sửa đề: \(\dfrac{n+1}{2n+3}\)

Gọi d=ƯCLN(n+1;2n+3)

=>2n+2-2n-3 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

b: Gọi d=ƯCLN(4n+8;2n+3)

=>4n+8-4n-6 chia hết cho d

=>2 chia hêt cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

10 tháng 2 2019

giúp mình vs nha

7 tháng 3 2023

a) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d

    2n+3 ⋮ d

=> (2n+3)-(2n+2) ⋮ d => 1⋮ d

Mà d ∈ N* => d =1

=> ƯCLN(n+1, 2n+3) = 1

Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)

b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)

=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d

    4n+8 ⋮ d

=> (4n+8)-(4n+6) ⋮ d => 2⋮ d

Mà d ∈ N* => d =1; 2

Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2

=> d ≠ 2 => d = 1

=> ƯCLN(2n+3, 4n+8)=1

Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm) 

17 tháng 7 2023

) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d

    2n+3 ⋮ d

=> (2n+3)-(2n+2) ⋮ d => 1⋮ d

Mà d ∈ N* => d =1

=> ƯCLN(n+1, 2n+3) = 1

Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)

b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)

=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d

    4n+8 ⋮ d

=> (4n+8)-(4n+6) ⋮ d => 2⋮ d

Mà d ∈ N* => d =1; 2

Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2

=> d ≠ 2 => d = 1

=> ƯCLN(2n+3, 4n+8)=1

Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm) 

 Đúng(0)   Cao yến Chi Cao yến Chi14 tháng 4 2020 lúc 12:42  

bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản

A=2n+1/2n+2

B=2n+3/3n+5

Bài 2: 

a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản

b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản

giúp mk với 

mk sẽ tick cho!!