Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :n số hạng :a1 ;a2 ; a3 ; ... ; an-1 ;an chỉ nhận các giá trị bằng 1 hoặc -1 Suy ra :Các tích :a1a2 ; a2a3 ; ...; ana1 chỉ nhận các giá trị bằng 1 hoặc -1 Mà a1a2+a2a3+a3a4+...+ana1=0 Suy ra các số hạng trong dãy có giá trị bằng 1 và -1 là bằng nhau Mà dãy có n số hạng Suy ra có n/2 số hạng có giá trị bằng -1 Lại có : (a1a2)(a2a3)(a3a4)...(ana1)=(a1a2a3...an)(a1a2a3...an)=1>0 Chứng tỏ n/2 số hạng có giá trị bằng -1 là số chẵn Suy ra n/2 chia hết cho 2 Suy ra n chia hết cho 4 Vậy n chia hết cho 4
Bổ đề: Do x+(-x) = 0 (mod 2) nên ta cũng có x = -x = |x| (mod 2).
Vậy S = (a1-a2)+(a2-a3)+...+(an-a1) (mod 2)
<=> S = 0 (mod 2) (đpcm).
Ta có với số nguyên a bất kì:
| a | - a = a - a = 0 là số chẵn nếu a\(\ge\)0
| a | - a = -a - a = -2a là số chẵn nếu a < 0
Tóm lại: | a | - a là số chẵn với a nguyên bất kì
=> | a1 - a2 | - ( a1 - a2) là số chẵn
| a2 - a3 | - ( a2 - a3) là số chẵn
| a3 - a4 | - ( a3 - a4) là số chẵn
....
| an- a1 | - ( an - a1) là số chẵn
=> [ | a1 - a2| + |a2 - a3| + | a3 - a4| +...+ |an - a1| ] - [( a1 - a2) + (a2 - a3) + ( a3 - a4)+...+ (an - a1) ] là số chẵn
mà ( a1 - a2) + (a2 - a3) + ( a3 - a4)+...+ (an - a1) = 0 là số chẵn
=> | a1 - a2| + |a2 - a3| + | a3 - a4| +...+ |an - a1| là số chẵn
Vậy S luôn là 1 số chẵn.