Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử phân số trên chưa tối giản
Gọi \(ƯCLN\)(2n + 5 ; n + 3) là : d( d > 1)
\(\Rightarrow2n+5⋮d;n+3⋮d\)
\(\Rightarrow2\left(n+3\right)⋮d\Rightarrow2n+6⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy p/s trên tối giản
Bài giải:
Để \(\frac{2n+5}{n+3}\)là phần số tối giản <=>ƯCLN(2n + 5; n + 3) = {1; -1}
Gọi d là ƯCLN(2n + 5; n + 3)
=> 2n + 5 \(⋮\)d
=> n + 3 \(⋮\)d => 2(n + 3) \(⋮\) d => 2n + 6\(⋮\)d
=> (2n + 6) - (2n + 5) = 1 \(⋮\)d => d \(\in\){1; -1}
Vậy 2n + 5/n + 3 là phân số tối giản
Gọi U là UCLN của (14n+3) và (21n+4)
Để phân số (14*n+3)/(21*n+4) tối giản thì U=1.
ta có:
14n+3 chia hết cho U và 21n+4 chia hết cho U
=> 3(14n+3) chia hết cho U và 2(21n+4) chia hết cho U
=> 3(14n+3)-2(21n+4) chia hết cho U
=> 1 chia hết cho U
=> u=+-1
Vậy UCLN của (14n+3) và (21n+4) là 1,
hay phân số (14*n+3) / (21*n+4) tối giản
Gọi ƯCLN (14n + 3 ; 21n + 5) = d
=> 14n + 3 chia hết cho d => 3(14n + 3) chia hết cho d
21n + 5 chia hết cho d => 2(21n + 5) chia hết cho d
=>2(21n + 5) - 3(14n + 3) chia hết cho d
=> (42n + 10) - (42n + 9) chia hết cho d
=> d = ±1
=> \(\frac{14n+3}{21n+5}\) là phân số tối giản
Các bạn xem mình làm có đúng không ??
Đặt d = ƯCLN ( 14n + 3,21n + 5 ) ( d ∈ ℕ* )
Ta có : 14 n + 3 ⋮ d và 21n + 5 ⋮ d
⇒ 3( 14n + 3 ) ⋮ và 2( 21n + 5 ) ⋮ d ⇒ 42n + 9 ⋮ d và 42n + 10 ⋮ d
⇒ (42n + 10) - (42n + 9) ⋮ d ⇒ 1 ⋮ d . Do đó : d = 1
Vậy phân số trên là phân số tối giản
Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...
Bài 1 :
Ta có :
\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)
Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)
\(\Rightarrow\)\(\left(-1\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)
Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n
Chúc bạn học tốt ~
Gọi ƯCLN của n+2 và 2n+3 là d
Ta có:
\(n+2⋮d;2n+3⋮d\)
\(\Rightarrow2n+4⋮d;2n+3⋮d\)
\(\Rightarrow2n+4-2n-3⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Suy ra \(\left(n+2;2n+3\right)=1\Rightarrow\frac{n+2}{2n+3}\) là phân số tối giản
Bài 1: Chứng tỏ rằng phân số:
A=\(\frac{n+3}{2n+5}\)là phân số tối giản với mọi số tự nhiên n thuộc N
Gọi d là UCLN(n+3,2n+5)
=> n+3:d , 2n+5:d
=>2n+6:d , 2n+5:d
=>2n+6 - 2n+5 :d
=> 1: d
Vậy n+3/2n+5 là phan so toi gian
Minh nhanh nhat nen cho minh nhe
gọi \(\text{Ư}CLN_{\left(n+3;2n+5\right)}=d\)
\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)
\(\Rightarrow2n+6-\left(2n+5\right)⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
vậy phân số \(\frac{n+3}{2n+5}\) là phân số tối giản
\(\frac{m}{n}\)tối giản
=> m và n là số nguyên tố . (1)
để \(\frac{m}{n+mn}\)là số nguyên tố thì m và n+mn cũng là số nguyên tố
Ta có : • Từ (1) chứng tỏ m là số nguyên tố
• Từ (1) chứng tỏ m.n là số nguyên tố vì m và n đều là số nguyên tố (2)
Từ (1) và (2) ta có:
m và n+mn là số nguyên tố
=> \(\frac{m}{n+mn}\)là phân số tối giản
a. Gọi (n + 4,n+5) là d
Vì n + 4 và n + 5 chia hết cho d => (n+5) - (n+4) = 1 chia hết cho d
=> d = 1
=> n +4/ n+5 tối giản
b.Gọi (2n+3, n+2) là d
Ta có 2n+4 và 2n+3 chia hết cho d
=> (2n+4)-(2n+3) = 1 chia hết cho d
=> d =1
=> 2n+3/n+2 tối giản
ta có: muốn n/2n+3 là phân số tối giản thì (n,2n+3)=1
Gọi ƯCLN(n,2n+3) là :d
suy ra: n chia hết cho d và 2n+3 chia hết cho d
suy ra : (2n+3) - 2n chia hết cho d
3 chia hết cho d
suy ra: d thuộc Ư(3) =( 3,1)
ta có: 2n +3 chia hết cho 3
2n chia hết cho 3
mà (n,3)=1 nên n chia hết cho 3
vậy khi n=3k thì (n,2n+3) = 3 (k thuộc N)
suy ra : n ko bằng 3k thì (n,2n+3)=1
vậy khi n ko có dạng 3k thì n/2n+3 là phân số tối giản
a/ n rút gọn đi còn 1/2+3 bằng 1/5
b/rút gọn 3a hết còn 1/1 vậy bằng 1