K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

Giả sử phân số trên chưa tối giản

Gọi \(ƯCLN\)(2n + 5 ; n + 3) là : d( d > 1)

\(\Rightarrow2n+5⋮d;n+3⋮d\)

\(\Rightarrow2\left(n+3\right)⋮d\Rightarrow2n+6⋮d\)

\(\Rightarrow2n+6-2n-5⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy p/s trên tối giản

14 tháng 8 2018

Bài giải:

Để \(\frac{2n+5}{n+3}\)là phần số tối giản <=>ƯCLN(2n + 5; n + 3) = {1; -1}

Gọi d là ƯCLN(2n + 5; n + 3)

=>  2n + 5 \(⋮\)d

=>   n + 3 \(⋮\)d => 2(n + 3) \(⋮\)​ d => 2n + 6\(⋮\)d

=>  (2n + 6) - (2n + 5) = 1 \(⋮\)d => d \(\in\){1; -1}

Vậy 2n + 5/n + 3 là phân số tối giản

2 tháng 5 2015

Gọi U là UCLN của (14n+3) và (21n+4) 
Để phân số (14*n+3)/(21*n+4) tối giản thì U=1. 
ta có: 
14n+3 chia hết cho U và 21n+4 chia hết cho U 
=> 3(14n+3) chia hết cho U và 2(21n+4) chia hết cho U 
=> 3(14n+3)-2(21n+4) chia hết cho U 
=> 1 chia hết cho U 
=> u=+-1 
Vậy UCLN của (14n+3) và (21n+4) là 1, 
hay phân số (14*n+3) / (21*n+4) tối giản

28 tháng 2 2016

Gọi ƯCLN (14n + 3 ; 21n + 5) = d

=> 14n + 3 chia hết cho d => 3(14n + 3) chia hết cho d

     21n + 5 chia hết cho d => 2(21n + 5) chia hết cho d

=>2(21n + 5) - 3(14n + 3) chia hết cho d

=> (42n + 10) - (42n + 9) chia hết cho d

=> d = ±1

=> \(\frac{14n+3}{21n+5}\) là phân số tối giản

28 tháng 2 2016

Các bạn xem mình làm có đúng không ??

Đặt d = ƯCLN ( 14n + 3,21n + 5 ) ( d ∈ ℕ* )

Ta có : 14 n + 3 ⋮ d và 21n + 5 ⋮ d

⇒ 3( 14n + 3 ) ⋮ và 2( 21n + 5 ) ⋮ d ⇒ 42n + 9 ⋮ d và 42n + 10 ⋮ d

⇒ (42n + 10) - (42n + 9) ⋮ d ⇒ 1 ⋮ d . Do đó : d = 1

Vậy phân số trên là phân số tối giản

18 tháng 3 2018

Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...

18 tháng 3 2018

Bài 1 : 

Ta có : 

\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)

Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)

Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n 

Chúc bạn học tốt ~ 

26 tháng 3 2020

Gọi ƯCLN của n+2 và 2n+3 là d

Ta có:

\(n+2⋮d;2n+3⋮d\)

\(\Rightarrow2n+4⋮d;2n+3⋮d\)

\(\Rightarrow2n+4-2n-3⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Suy ra \(\left(n+2;2n+3\right)=1\Rightarrow\frac{n+2}{2n+3}\) là phân số tối giản

19 tháng 6 2017

Gọi d là UCLN(n+3,2n+5)

=> n+3:d , 2n+5:d

=>2n+6:d , 2n+5:d

=>2n+6 - 2n+5 :d

=> 1: d

Vậy n+3/2n+5 là phan so toi gian

Minh nhanh nhat nen cho minh nhe

28 tháng 2 2018

gọi \(\text{Ư}CLN_{\left(n+3;2n+5\right)}=d\)

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)

\(\Rightarrow2n+6-\left(2n+5\right)⋮d\)

\(\Rightarrow2n+6-2n-5⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

vậy phân số \(\frac{n+3}{2n+5}\) là phân số tối giản

2 tháng 7 2016

\(\frac{m}{n}\)tối giản

=> m và n là số nguyên tố . (1)

để \(\frac{m}{n+mn}\)là số nguyên tố thì m và n+mn cũng là số nguyên tố 

Ta có : • Từ (1) chứng tỏ m là số nguyên tố

           • Từ (1) chứng tỏ  m.n là số nguyên tố vì m và n đều là số nguyên tố  (2)

Từ (1) và (2) ta có: 

m và n+mn là số nguyên tố 

=> \(\frac{m}{n+mn}\)là phân số tối giản 

3 tháng 7 2016

cho mình hỏi chỗ (2) ấy m.nà số n.tố vì m và n đều là số n.tố là sao ???

a. Gọi (n + 4,n+5) là d

Vì n + 4 và n + 5 chia hết cho d => (n+5) - (n+4) = 1 chia hết cho d

=> d = 1

=> n +4/ n+5 tối giản

b.Gọi (2n+3, n+2) là d

Ta có 2n+4 và 2n+3 chia hết cho d

=> (2n+4)-(2n+3) = 1 chia hết cho d

=> d =1

=> 2n+3/n+2 tối giản

25 tháng 1 2015

 ta có: muốn n/2n+3 là phân số tối giản thì (n,2n+3)=1

Gọi ƯCLN(n,2n+3) là :d


suy ra:  n chia hết cho d và 2n+3 chia hết cho d

suy ra :    (2n+3) - 2n chia hết cho d

                 3 chia hết cho d 

  suy ra:  d thuộc Ư(3) =( 3,1)

 ta có: 2n +3 chia hết cho 3

            2n chia hết cho 3

           mà (n,3)=1 nên  n chia hết cho 3

vậy khi n=3k thì (n,2n+3) = 3    (k thuộc N) 

   suy ra : n ko bằng 3k thì (n,2n+3)=1

vậy khi n ko có dạng 3k thì n/2n+3 là phân số tối giản 

   

8 tháng 2 2015

a/ n rút gọn đi còn 1/2+3 bằng 1/5

b/rút gọn 3a hết còn 1/1 vậy bằng 1