Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $a+1=6k, b+2007=6m$ với $k,m\in\mathbb{Z}$
$4^n+a+b=4^n+6k-1+6m-2007=(4^n-2008)+6k+6m$
Hiển nhiên $4^n-2008\vdots 2$ với mọi $n$ là tự nhiên khác 0
$4\equiv 1\pmod 3\Rightarrow 4^n\equiv 1\pmod 3$
$\Rightarrow 4^n-2008\equiv 1-2008\equiv -2007\equiv 0\pmod 3$
Vậy $4^n-2008$ chia hết cho cả 2 và 3 nên chia hết cho 6
$\Rightarrow 4^n+a+b=4^n-2008+6k+6m\vdots 6$ (đpcm)
Gọi tổng 3 số tự nhiên liên tếp là : x+(x+1)+(x+2)=3x+3
Mà 3x+3 là số lẻ\(\Leftrightarrow\)x là số chẵn hay x chia hết cho 2 (1)
Tương tự, ta có tích của chúng là: x.(x+1).(x+2)=x3.3 chia hết cho 3
Từ (1)\(\Rightarrow\)x3 chia hết cho 23 (chia hết cho 8)
Vậy với x+(x+1)+(x+2) là số lẻ thì x.(x+1).(x+2) chia hết cho 24
* Mình giải theo dấu hiệu chia hết cho 24 đó bạn. Số nào vùa chia hết cho 3 vừa chia hết cho 8 thì chia hết cho 24
- Vì n là số tự nhiên lẻ
=> 24n có tận cùng là 24
=> 24n + 1 có tận cùng là 24 + 1 = 25
Vì số chia hết cho 25 là số có chữ số tận cùng là 25 => 24n + 1 chia hết cho 25 (1)
- Vì 24 : 23 = 1 (dư 1)
=> 24n : 23 cũng sẽ dư 1
=> 24n + 1 : 23 sẽ có dư là 2
=> 24n + 1 sẽ không chia hết cho 23 (2)
Từ (1) và (2) suy ra: 24n + 1 chia hết cho 25 nhưng ko chia hết cho 23 với n là số tự nhiên lẻ