Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh chi moi lop 7 nen chua biet nheiu, nhung minh se lam theo cach cua minh.
Neu sai thi co the it nhat se cho ban dc mot vai goi y de lam bai 9 ( trong truong hop ban ko bik
dat n=abc...
neu n^2 chia het cho 3->n^2 co so nguyen to 3=>n co so nguyrn to 3 -> n co so nguyen to 3 (1)
neu n khong chia het cho 3 =>n ko co so nguyen to 3->n^2 ko co so nguyen to 3->n^2 ko chia het cho 3(2)
Vay n^2 chia het cho 3 thi n chia het cho 3
minh thay van sai sot rat nhieu va qua nhieu chu, day co the lam goi y thoi
mk mới hk lớp 6 ko biết giải có đúng ko
Giả sử n không chia hết cho 3 => n có dạng 3k+1 hoặc 3k+2 (k thuộc N*)
+) Với n=3k+1
=> n^2=(3k+1)^2=9.k^2+6k+1 không chia hết cho 3
+) Với n=3k+2
=> n^2=(3k+2)^2=9.k^2+12k+4 không chia hết cho 3
Vậy với n không chia hết cho 3 thì n^2 không chia hết cho 3
=> Với n^2 chia hết cho 3 thì n phải chia hết cho 3
\(2^{2n}\left(2^{2n+1}-1\right)-1=2.16^n-4^n-1\)
#Chứng minh quy nạp: \(2.16^n-4^n-1\) chia hết cho 9 (1)
+Với n = 1; 2; 3 thì (1) đúng.
+Giả sử (1) đúng với n = k , tức là \(2.16^k-4^k-1\)\(\left(k\ge1\right)\) chia hết cho 9.
Ta chứng minh (1) đúng với n = k+1, tức là chứng minh số sau chia hết cho 9:
\(2.16^{k+1}-4^{k+1}-1=16.2.16^k-4.4^k-1\)
\(=16\left(2.16^k-4^k-1\right)+12.4^k+15\)
\(\text{Mà }2.16^k-4^k-1\text{ chia hết cho 9 nên ta cần chứng minh }12.4^k+15\text{ chia hết cho 9, hay }4.4^k+5\text{ chia hết cho 3}\)
#Quy nạp phụ: \(4.4^n+5\)chia hết cho 3 (2)
+n = 1; 2; 3 thì (2) đúng
+Giả sử (2) đúng với n = k, tức là 4.4k + 5 chia hết cho 3.
Ta chứng minh (2) đúng với n = k+1, tức là chứng minh số sau chia hết cho 3:
4.4k+1 + 5 = 4.4.4k + 5 = 4(4.4k + 5) - 15 chia hết cho 3 vì 4.4k + 5 chia hết cho 3 và 15 chia hết cho 3.
Vậy 4.4n + 5 chia hết cho 3 với mọi n.
=> 12.4k + 15 chia hết cho 9
Mà 2.16k - 4k - 1 chia hết cho 9
=> 16.(2.16k - 4k -1) + 12.4k + 15 chia hết cho 9
Vậy \(2.16^n-4^n-1\) chia hết cho 9 với mọi số tự nhiên n (đpcm)
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)