K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2016

n2 là hợp số vì nó chia hết cho n ( n2=n.n đương nhiên chia hết cho n) và n>1 ( nếu=1 thì vẫn có thể nguyên tố)

1 tháng 12 2015

n la so nguyen to lon hon 3 nen ko chia het cho 3.

Vay n^2 chia cho 3 du 1 <=> n^2=3k+1

Do do : n^2+2006=3k+1+2006 =3k+2007 chia het cho 3 

Vay n^2+2006 la hop so 

**** nhe 

15 tháng 4 2016

Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k+1 hoặc 3k+2 (k\(\varepsilon\) N*) và n2+2006 luôn lớn hơn 3

TH1: Với n = 3k+2, ta có : n2+2006 = (3k+1)2+2006 = 9k2+ 6k + 2007 = 3 ( 3K2  +2k + 669) luôn chia hết cho 3 với mọi k\(\in\) N* \(\Rightarrow\) n2+2006 là hợp số

TH2: Với n = 3k+2, ta có: n2+ 2006 = (3k+2)2+2006 = 9k2+ 12k + 2010 = 3 ( 3k2 + 4k + 670) luôn chia hết cho 3 với mọi k\(\varepsilon\) N*\(\Rightarrow\) n2+2006 là hợp số

Vậy n2+2006 là hợp số với n là số nguyên tố lớn hơn 3

15 tháng 4 2016

Hop số , ủng hộ mk nha

16 tháng 4 2016

a, ko có số n thỏa mãn

b, n^2+2006 là hợp số với n là số nguyên tố lớn hơn 3

16 tháng 4 2016

a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.

25 tháng 2 2020

Do p là số nguyên tố mà p < 3

\(\Rightarrow p=2\) Khi đó : \(2p+1=5\) là số nguyên tố

Do đó   \(4p+1=4.2+1=9\) là hợp số.

25 tháng 2 2020

Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là : 3k + 1 và 3k + 2

Ta có 2 trường hợp :

* TH1 : p = 3k + 1 

\(\Rightarrow\)2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 = 3 . ( 2k + 1 ) là hợp số 

\(\Rightarrow\)Trường hợp này bị loại vì theo đề bài 2p + 1 phải là nguyên tố .

* TH2 : p = 3k + 2

\(\Rightarrow\)2p + 1 = 2 . ( 3k + 2 ) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố .

\(\Rightarrow\)Trường hợp này được chọn vì đúng theo yêu cầu đề bài .

\(\Rightarrow\)4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 = 3 . ( 4k + 3 ) là hợp số .

         Vậy 4p + 1 là hợp số ( đpcm )

23 tháng 10 2017

p nhỏ nhất = 5 => p + 8 = 13

Vậy p + 100 = 5 + 100 = 105 

Vậy p + 100 là hợp số 

4 tháng 11 2017

còn cách nào khác ko