Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
Ta có : \(\frac{1+x}{2}\ge\sqrt{x}\Rightarrow\left(\frac{1+x}{2}\right)^n\ge\sqrt{x^n}\) (1)
\(\frac{1+y}{2}\ge\sqrt{y}\Rightarrow\left(\frac{1+y}{2}\right)^n\ge\sqrt{y^n}\)(2)
\(\frac{1+z}{2}\ge\sqrt{z}\Rightarrow\left(\frac{1+z}{2}\right)^n\ge\sqrt{z^n}\)(3)
Từ 1,2,3 \(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\)
Áp dụng BĐT Cauchy cho 3 số ta có :
\(\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\ge3^3\sqrt{\sqrt{x^n}.\sqrt{y^n}.\sqrt{z^n}}=3\)
\(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge3\)
Đẳng thức xảy ra <=> x = y = z = 1
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(< \left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng vào bài toán ta được
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)
\(\RightarrowĐPCM\)