Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để N có giá trị nguyên
\(\Rightarrow\frac{9}{\sqrt{x}-5}\) có giá trị nguyên
\(\Rightarrow9⋮\sqrt{x}-5\)
\(\Rightarrow\sqrt{x}-5\in\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{-4;2;4;6;8;14\right\}\)
\(\Rightarrow x\in\left\{4;16;36;64;196\right\}\)
Vậy ...........
\(N\in Z\Rightarrow9:^.\sqrt{x}-5\)mà\(\sqrt{x}\ge0\Rightarrow\sqrt{x}-5\ge-5\Rightarrow\sqrt{x}-5\in\left\{-3;-1;1;3;9\right\}\Rightarrow\sqrt{x}\in\left\{2;4;6;8;14\right\}\)
\(\Rightarrow x\in\left\{4;16;36;64;196\right\}\)
để N là số nguyên thì \(\frac{9}{\sqrt{x}-5}\in Z\)
\(\Rightarrow\text{ }9\text{ }⋮\text{ }\sqrt{x}-5\)
\(\Rightarrow\text{ }\sqrt{x}-5\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
Lập bảng ta có :
\(\sqrt{x}-5\) | 1 | -1 | 3 | -3 | 9 | -9 |
\(\sqrt{x}\) | 6 | 4 | 8 | 2 | 14 | -4 |
\(x\) | 36 | 16 | 64 | 4 | 196 | không tồn tại |
Lời giải:
Với $x$ nguyên, để $N$ nguyên thì $\sqrt{x}-5$ là ước của $9$
$\Rightarrow \sqrt{x}-5\in\left\{\pm 1;\pm 3;\pm 9\right\}$
$\Rightarrow \sqrt{x}\in\left\{4; 6; 8; 2; 14; -4\right\}$
Vì $\sqrt{x}\geq 0$ nên: $\sqrt{x}\in\left\{4; 6; 8; 2; 14\right\}$
$\Rightarrow x\in\left\{16; 36; 64; 4; 196\right\}$
a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)
Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)
b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)
Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)
Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành
\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)
\(\Rightarrow t=5t-10\)
\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)
\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)
\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)
Vậy \(x=\frac{9}{4}\)