K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2023

a: Nửa chu vi tam giác ABC là:

\(\dfrac{2+3+4}{2}=4,5\left(cm\right)\)

Diện tích tam giác ABC là:

\(S_{ABC}=\sqrt{4,5\left(4,5-2\right)\left(4,5-3\right)\left(4,5-4\right)}\)

\(=\sqrt{4,5\cdot2,5\cdot1,5\cdot0,5}=\dfrac{3\sqrt{15}}{4}\)(cm2)

=>\(\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{3\sqrt{15}}{4}\)

=>\(2\cdot AH=\dfrac{3\sqrt{15}}{4}\)

=>\(AH=\dfrac{3\sqrt{15}}{8}\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HB^2+\dfrac{135}{64}=4\)

=>\(HB^2=\dfrac{121}{64}\)

=>HB=11/8(cm)

HB+HC=BC

=>HC+11/8=4

=>HC=4-11/8=21/8(cm)

b: Gọi BK,CE lần lượt là các đường cao ứng với các cạnh AC,AB

 

Vì BK\(\perp\)AC và CE\(\perp\)AB

nên \(S_{ABC}=\dfrac{1}{2}\cdot BK\cdot AC=\dfrac{1}{2}\cdot CE\cdot AB\)

=>\(\left\{{}\begin{matrix}BK\cdot\dfrac{3}{2}=\dfrac{3\sqrt{15}}{4}\\CE\cdot1=\dfrac{3\sqrt{15}}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BK=\dfrac{\sqrt{15}}{2}\left(cm\right)\\CE=\dfrac{3\sqrt{15}}{4}\left(cm\right)\end{matrix}\right.\)

c: Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{4+9-16}{2\cdot2\cdot3}=\dfrac{-1}{4}\)

=>\(\widehat{BAC}\simeq104^029'\)

Xét ΔABH vuông tại H có \(sinB=\dfrac{AH}{AB}=\dfrac{3\sqrt{15}}{16}\)

=>\(\widehat{B}\simeq46^034'\)

Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

=>\(\widehat{ACB}+104^029'+46^034'=180^0\)

=>\(\widehat{ACB}=28^057'\)

24 tháng 7 2023

Xét tam giác ABC : \(AB^2+AC^2=3^2+4^2=5^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A \(\Rightarrow\widehat{A}=90^o\)
\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \Rightarrow\widehat{B}=53^o8'\)

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \Rightarrow\widehat{C}=36^o52'\)

24 tháng 7 2023

Theo định lí pytago ta có: \(AB^2+AC^2=BC^2=9+16=BC^2=25\)

⇒ Tam giác ABC vuông tại A ⇒ \(\widehat{A}=90^\circ\)

Theo tỉ lệ thức trong tam giác vuông:

\(sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}=0,8\approx53^{\circ}\)

\(\widehat{C}=90^{\circ}-53^{\circ}=37^{\circ}\)

 

13 tháng 7 2015

bạn tự vẽ hình 

ta có:

\(\tan C=\frac{AB}{AC}=\frac{3}{4}\)=> góc C \(\approx\) 36052'

=> góc B= 900-36052'=5308'

Xét tam giác ABC vuông tại A:

AB2+AC2=BC2

32+42=BC2

BC2=25

=>BC=5 (cm)

25 tháng 10 2017

mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày 

A B C 4 9

Ta có : BC = BH +HC = 4 + 9 = 13 (cm)

Theo hệ thức lượng trong tam giác vuông ta có:

- AC2 = BC * HC 

AC2 = 13 * 9 = 117 

AC = \(3\sqrt{13}\)(cm)

- AB2 =BH * BC 

AB2 = 13 * 4 = 52 

AB = \(2\sqrt{13}\)(CM)

25 tháng 10 2017

trong sbt có giải ý. dựa vào mà lm

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

AB=căn BC^2-AC^2=4*căn 2

ΔABC vuông tại A có AB=AC

nên ΔABC vuông cân tại A

=>góc B=góc C=45 độ

17 tháng 11 2023

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=1\cdot4=4\)

=>\(AH=\sqrt{4}=2\left(cm\right)\)

BC=BH+CH

=>BC=1+4=5(cm)

XétΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB^2=1\cdot5=5\\AC^2=4\cdot5=20\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{\sqrt{5}}{5}\)

nên \(\widehat{C}\simeq27^0\)

ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}=90^0-27^0=63^0\)

b: AH=2cm

=>H thuộc (A;2cm)

Xét (A;2cm) có

AH là bán kính

BC\(\perp\)AH tại H

Do đó: BC là tiếp tuyến của (A;2cm)

c: Sửa đề: BDEH

Xét ΔAHB vuông tại H và ΔADE vuông tại D có

AH=AD

\(\widehat{HAB}=\widehat{DAE}\)

Do đó: ΔAHB=ΔADE

=>HB=DE

Xét tứ giác BDEH có

BH//ED

BH=ED

Do đó: BDEH là hình bình hành