K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2021

undefined

Xét ΔADF và ΔBCF có 

AD=BC

\(\widehat{D}=\widehat{C}\)

FD=FC

Do đó: ΔADF=ΔBCF

Suy ra: FA=FB

Xét ΔFAB có FA=FB

nên ΔFAB cân tại F 

mà FE là đường trung tuyến ứng với cạnh đáy AB

nên FE là đường cao ứng với cạnh AB

hay FE\(\perp\)AB

29 tháng 3 2019

Gọi O là giao điểm của AC và BD.

Chứng minh: OE ^ AB.

Tương tự, có OF ^ CD.

Suy ra OF ^ AB. Vậy EF ^ AB

4 tháng 9 2016

a)Xét ΔADN và ΔBCN có: AD=BC; góc D= góc C (ABCD là hình thang cân); DN=CN( N là trung điểm của CD). Vậy ΔADN= ΔBCN (c.g.c)→AN=BN→Tam giác ANB cân

b) Vì ΔANB cân, có NM là đường trung tuyến nên đồng thời cũng là đường trung trực của đoạn thẳng AB

25 tháng 8 2021

undefined

25 tháng 8 2021

Hình vẽ minh họaundefined

22 tháng 6 2023

2)

Có: \(\left\{{}\begin{matrix}AB=AD\left(gt\right)\\AD=BC\left(2.cạnh.bên.hình.thang.cân\right)\end{matrix}\right.\)

\(\Rightarrow AB=BC\Rightarrow\Delta ABC.cân.tại.B\)

Mà AB // ED (gt)

\(\Rightarrow\widehat{BAC}=\widehat{ACD}\left(so.le.trong\right)\)

\(\Rightarrow\widehat{ACB}=\widehat{ACD}\)

=> CA là tia phân giác của góc C.