K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

Câu trả lời là không. Và lời giải khá đơn giản. Thay dấu cộng bằng số 1 và dấu trừ bằng - 1. Xét tích tất cả các số trên bảng vuông. Khi đó, qua mỗi phép biến đổi, tích này không thay đổi (vì sẽ đổi dấu 4 số). Vì vậy, cho dù ta thực hiện bao nhiêu lần, từ bảng vuông (1, 15) sẽ chỉ đưa về các bảng vuông có số lẻ dấu -, có nghĩa là không thể đưa về bảng có toàn dấu cộng. 

Bạn tham khảo nha

8 tháng 12 2017

minh ko biet

11 tháng 1 2022

Gọi tích tất cả các số của mỗi hàng lần lượt là \(a_1,a_2,...,a_n\) và tương ứng số số bằng -1 ở mỗi hàng này lần lượt là \(m_1,m_2,...,m_n\). Khi đó \(a_i=\left(-1\right)^{m_i},\forall i\in\overline{1,n}\).

Tương tự gọi tích tất cả các số ở mỗi cột lần lượt là \(b_1,b_2,...,b_n\) và tương ứng số số bằng -1 ở mỗi cột này lần lượt là \(p_1,p_2,...,p_n\) thì \(b_i=\left(-1\right)^{p_i}.\forall i\in\overline{1,n}\).

Dễ thấy \(m_1+m_2+...+m_n=p_1+p_2+...+p_n\).

Giả sử tổng tất cả 2n tích đó bằng 0.

Khi đó \(\left(-1\right)^{m_1}+\left(-1\right)^{m_2}+...+\left(-1\right)^{m_n}+\left(-1\right)^{p_1}+\left(-1\right)^{p_2}+...+\left(-1\right)^{p_n}=0\).

Gọi x là số số chẵn trong các số \(m_1,m_2,...,m_n\) và y là số số chẵn trong số \(p_1,p_2,...,p_n\).

Ta có \(0=\left(-1\right)^{m_1}+\left(-1\right)^{m_2}+...+\left(-1\right)^{m_n}+\left(-1\right)^{p_1}+\left(-1\right)^{p_2}+...+\left(-1\right)^{p_n}=x-\left(n-x\right)+y-\left(n-y\right)=2\left(x+y\right)-2n\)

\(\Rightarrow x+y=n\).

Mà n lẻ nên x, y khác tính chẵn, lẻ.

Giả sử x chẵn, y lẻ. Khi đó \(m_1+m_2+...+m_n\) là số lẻ và \(p_1+p_2+...+p_n\) là số chẵn, vô lí.

Vậy...

 

6 tháng 9 2020

Trên mỗi hình vuông con, kích thước2x2 chỉ có không quá 1 số chia hết cho 2, cũng vậy, có không quá 1 số chia hết cho 3

Lát kín bảng bởi 25 hình vuông, kích thước 2x2, có nhiều nhất 25 số chia hết cho 2, có nhiều nhất 25 số chia hết cho 3. Do đó, có ít nhất 50 số còn lại không chia hết cho 2, cũng không chia hết cho 3. Vì vậy, chúng phải là một trong các số 1,5,7.

Từ đó, theo nguyên lý Dirichlet, có một số xuất hiện ít nhất 17 lần.

28 tháng 6 2015
= 11/12 + 19/16 = 101/48 tic đúng nhé
28 tháng 6 2015

101/48

**** tớ nha nguyễn duy mạnh

17 tháng 8 2020

Số ở giữa của dãy là 1/2.

Do vậy nếu ta xóa số a,b bất kỳ thì ra một số mới nào đó ( đặt số mới là t chẳng hạn ) , đến một lúc nào đó sẽ phải xóa tới số 1/2 mà khi đó ta có :
t + 1/2 - 2 1/2t = 1/2
Do vậy số cuối cùng còn lại bất kể mọi cách xóa là 1/2 nhé.

Bài 4: Tìm số dư của phép chia cho 9. CHIA9.PAS Cho một số nguyên dương N có M chữ số. Yêu cầu: Tìm số dư của phép chia số N cho 9. Dữ liệu vào: Cho trong file văn bản CHIA9.INP, có cấu trúc như sau: - Dòng 1: Ghi số nguyên dương M là số lượng chữ số của số N (1 ≤ M ≤ 100). - Dòng 2: Ghi M chữ số của số N, các chữ số được ghi liền nhau. Dữ liệu ra: Ghi ra file văn bản CHIA9.OUT, theo cấu trúc như...
Đọc tiếp

Bài 4: Tìm số dư của phép chia cho 9. CHIA9.PAS Cho một số nguyên dương N có M chữ số. Yêu cầu: Tìm số dư của phép chia số N cho 9. Dữ liệu vào: Cho trong file văn bản CHIA9.INP, có cấu trúc như sau: - Dòng 1: Ghi số nguyên dương M là số lượng chữ số của số N (1 ≤ M ≤ 100). - Dòng 2: Ghi M chữ số của số N, các chữ số được ghi liền nhau. Dữ liệu ra: Ghi ra file văn bản CHIA9.OUT, theo cấu trúc như sau: - Dòng 1: Ghi số nguyên dương Q, là số dư tìm được. Ví dụ: CHIA9.INP CHIA9.OUT 5 74283 6

Bài 5: Tìm số sát sau - SOSATSAU.PAS Cho số tự nhiên A có N chữ số. Hãy hoán vị các chữ số trong A để thu được số B thoả mãn đồng thời hai điều kiện sau: - B lớn hơn A. - B nhỏ nhất. Dữ liệu vào: Cho trong file SOSATSAU.INP có cấu trúc như sau: - Dòng 1: Ghi số N là số lượng chữ số của A (0a[i-1]. Do đoạn cuối giảm dần, điều này thực hiện bằng cách tìm từ cuối dãy lên đầu gặp chỉ số k đầu tiên thỏa mãn a[k]>a[i-1] (có thể dùng tìm kiếm nhị phân) - Đảo giá trị a[k] và a[i-1] - Lật ngược thứ tự đoạn cuối giảm dần (từ a[i] đến a[k]) trở thành tăng dần + Nếu không tìm thấy tức là toàn dãy đã sắp xếp giảm dần, đây là hoán vị cuối cùng.

Bài 2. MẬT KHẨU. Cu Tí thường xuyên tham gia thi lập trình trên mạng. Vì đạt được thành tích cao nên Tí được gửi tặng một phần mềm diệt virus. Nhà sản xuất phần mềm cung cấp cho Tí một mã số là một dãy gồm các bộ ba chữ số ngăn cách nhau bởi dấu chấm và có chiều dài không quá 255 (kể cả chữ số và dấu chấm). Để cài đặt được phần mềm, Tí phải nhập vào mật khẩu của phần mềm. Mật khẩu là một số nguyên dương M được tạo ra bằng cách tính tổng giá trị các bộ ba chữ số trong dãy mã số, các bộ ba này được đọc từ phải sang trái. - Yêu cầu: Cho biết mã số của phần mềm, hãy tìm mật khẩu của phần mềm đó. - Dữ liệu vào: Cho từ tệp văn bản có tên BL2.INPgồm một dòng chứa xâu ký tự S (độ dài xâu không quá 255 ký tự) là mã số của phần mềm. - Kết quả: Ghi ra tệp văn bản có tên BL2.OUTgồm một số nguyên là mật khẩu tìm được. MK.INP MK.OUT 123.234 257

Bài 6: Biến đổi số BIENDOI.PAS Cho một số nguyên dương M có K chữ số (0 < M; 1 ≤ K ≤ 200). Người ta thực hiện biến đổi số M bằng cách xóa đi trong M các chữ số 0 và sau đó sắp xếp các chữ số còn lại theo thứ tự không giảm của giá trị từng chữ số. Gọi số nguyên dương N là số thu được sau khi thực hiện biến đổi số M. Yêu cầu: Hãy tìm số nguyên dương N. Dữ liệu vào: Nhập vào từ tệp biendoi.inp số M Dữ liệu ra: Ghi ra tệp biendoi.out số N Ví dụ: M=3880247 N=234788

0