K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2021

2: Xét tứ giác MNPI có

O là trung điểm của MP

O là trung điểm của NI

Do đó: MNPI là hình bình hành

Suy ra: MI//NP

29 tháng 12 2021

2: Xét tứ giác MNPI có

O là trung điểm của MP

O là trung điểm của NI

Do đó: MNPI là hình bình hành

Suy ra: MI//NP

29 tháng 12 2021

2: Xét tứ giác MNPI có 

O là trung điểm của MP

O là trung điểm của NI

Do đó: MNPI là hình bình hành

Suy ra: MI//NP 

23 tháng 5 2021

 

a) xét ΔMPI và ΔMNI có:

\(\widehat{MIN}=\widehat{MIP}=90^o\)

MN=MP(ΔMNP cân tại M)

\(\widehat{MNI}=\widehat{MPI}\)(ΔMNP cân tại M)

⇒ΔMPI=ΔMNI(c.huyền.g.nhọn)

⇒IN=IP(2 cạnh tương ứng)

hay I là trung điểm của NP(đ.p.ch/m)

vì ΔMPI=ΔMNI nên \(\widehat{PMI}=\widehat{NMI}\)(2 góc tương ứng)

hay MI là phân giác của \(\widehat{PMN}\)

⇒điểm I cách đều 2 cạnh MN và MP(đ.p.ch/m)

b)Ta có: \(\widehat{MNI}+\widehat{MNA}=180^o\) (2 góc kề bù)

Mặc khác \(\widehat{MPI}+\widehat{BPI}=180^o\)(2 góc kề bù)

Mà \(\widehat{MNI}=\widehat{MPI}\)

Do đó: \(\widehat{MNA}=\widehat{BPI}=180^o-\widehat{MNI}\)

Vì I là trung điểm của NP⇒NI=PI

Mà NI=NA

⇒NA=PI

vì ΔMNP cân tại M ⇒MN=MP

Mà BP=MP ⇒BP=MN

xét ΔMNA và ΔBPI có:

\(\widehat{MNA}=\widehat{BPI}\)(ch/m trên)

NA=PI(ch/m trên)

BP=MN(ch/m trên)

⇒ΔMNA=ΔBPI(c-g-c)

⇒BI=MA(2 cạnh tương ứng)

c)Vì P là trung điểm của MB ⇒AP là đường trung tuyến của ΔMNP

vì C là trung điểm của AB ⇒MC là đường trung tuyến của ΔMNP

⇒I là trọng tâm của ΔMAB

⇒I,M,C thẳng hàng(đ.p.ch/m)

 

a: Xét ΔMNI và ΔMPI có 

MN=MP

NI=PI

MI chung

Do đó: ΔMNI=ΔMPI

Ta có: ΔMNP cân tại M

mà MI là đường trung tuyến

nên MI là đường cao

b: Xét tứ giác MNQP có

I là trung điểm của MQ

I là trung điểm của NP

Do đó: MNQP là hình bình hành

Suy ra: MN//PQ

c: Xét tứ giác MEQF có 

ME//QF

ME=QF

Do đó: MEQF là hình bình hành

Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường

mà I là trung điểm của MQ

nên I là trung điểm của FE

hay E,I,F thẳng hàng

27 tháng 11 2021

quỳnh lớp Thầy Trung phải không/?

a: Xét ΔPAN có

PM vừa là đường cao, vừa là trung tuyến

=>ΔPAN cân tại P

b: \(PM=\sqrt{5^2-4^2}=3\left(cm\right)\)

Xét ΔPAN có 

NB,PM là trung tuyến

NB cắt PM tại G

=>G là trọng tâm

GP=2/3*3=2cm

c: CI là trung trực của MP

=>I là trung điểm của MP và CI vuông góc MP tại I

Xét ΔMPN có

I là trung điểm của PM

IC//MN

=>C là trung điểm của PN

=>PM,NB,AC đồng quy