K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

Ta có:

A-B=2m^3+3m^3-4mn^2

TH1

Nếu m > n. Đặt m=n+x

óA-B=2(n+x)^3+3m^3-4(n+x)n^2

óA-B=2(n^3+3n^2x+2nx^2+x^3)=3m^3-4n^3-4n^2x

óA-B=n^3+2n^2x+6nx^2+2x^3>0

Vậy A>B

TH2                     

Nếu m < n. Đặt n=m+y

óA-B=2m^3+3(m+y)^3-4m(m+y)^2

óA-B=2m^3+3(m^3+3m^2y+3my^2+y^3)-4m^3-8m^2y-4my^2

óA-B=m^3+m^2y+5my^2+3y^3> 0

Vậy A > B

29 tháng 5 2018

a) Thay m = -1 và n = 2 ta có:

3m - 2n = 3(-1) -2.2 = -3 - 4 = -7

b) Thay m = -1 và n = 2 ta được 

7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.


 

27 tháng 9 2019

Xét trường hợp thoy:))

Xét \(m>n\).Đặt \(m=n+k\) với \(k\in N\)

Xét \(A-B=2m^3+3n^3-4mn^2\)

\(A-B=2\left(n+k\right)^3+3n^3-4\left(n+k\right)n^2\)

\(A-B=2n^3+6n^2k+6nk^2+2k^3+3n^3-4n^3-4n^2k\)

\(A-B=n^3+2n^2k+6nk^2+2k^3>0\)

Xét \(m< n\).Đặt \(n=m+k\)

Ta có:

\(A-B=2m^3+3n^3-4mn^2\)

\(A-B=2m^3+3\left(m+k\right)^3-4m\left(m+k\right)^2\)

\(A-B=2m^3+3m^3+9m^2k+9mk^2+3k^3-4m^3-8m^2k-4mk^2\)

\(A-B=m^3+m^2k+5mk^2+3k^2>0\)

Xét \(m=n\)

Ta có:

\(A=2m^3+3n^3=2m^3+3m^3=5m^3\)

\(B=4mn^2=4mm^2=4m^3\)

\(\Rightarrow A>B\)

Vậy \(A>B\) 

25 tháng 9 2018

Ta có:

\(A-B=2m^3+3n^3-4mn^2\)

TH1: Nếu m > n. Đặt m = n + x

\(A-B=2\left(n+x\right)^3+3n^3-4\left(n+x\right)n^2\)

\(A-B=2\left(n^3+3n^2x+3nx^2+x^3\right)+3n^3-4n^3-4n^2x\)

\(A-B=2n^3+6n^2x+6nx^2+2x^3+3n^3-4n^3-4n^2x\)

\(A-B=n^3+2n^2x+6nx^2+2x^3>0\)

\(\Rightarrow A>B\)

TH2: Nếu m < n. Đặt n = m + y

Làm tương tự ra được A > B

28 tháng 8 2019

Tham khảo:

Câu hỏi của Nguyễn Thị Phương Tiên - Toán lớp 8 - Học toán với OnlineMath

25 tháng 9 2016

1. Đặt \(t=x^2,t\ge0\)

\(3x^4+4x^2-2\ge3.0+4.0-2=-2\)

=> MIN = -2 khi x = 0

2. \(\left(x^2+2\right)\left(x+1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+2=0\\x+1=0\end{array}\right.\)

Vì \(x^2+2\ge2>0\) => Vô nghiệm

Vậy x+1 = 0 => x = -1

3. Kết quả là 10

4. Ko rõ đề