Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
**** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m )
Tt: n^2 chia hết cho 3
=> m^2 + n^2 chia hết cho 3
**** định lí đảo
m^2 + n^2 chia hết cho 3
Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a >
=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3
Xét các trườg hợp:
m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại
=> m^2 và n^2 cùng chia hết cho 3
hay m và n cùng chia hết cho 3
ko bt đúng ko nữa hehe
Chứng minh m^2+n^2 chia hết 3 khi m,n chia hết 3
Ta có: m^2+n^2= m^2-n^2 + 2n^2
=(m-n)(m+n) + 2n^2
Ta có: m,n chia hết cho 3 nên (m-n)(m+n) chia hết cho 3
Và: n chia hết cho 3 nên 2n^2 chia hết cho 3
Từ 2 điều trên suy ra: (m-n)(M+n) + 2n^2 chia hết 3
Vậy m,n chia hết cho 3 thì m^2+n^2 chia hết cho 3
Đúng thì t.i.c.k đúng đi bn
Tìm tất cả các số nguyên dương m,n sao cho p = m^2+n^2 là số nguyên tố và m^3+n^3 - 4 chia hết cho p
a.
Giả sử trong hai số x,y có một số chẵn; vai trò x,y như nhau; không mất tính tổng quát giả sử x chẵn ta có \(\left(xy\right)⋮2\)
Mà \(\left(x^2+y^2+10\right)⋮xy\) nên \(\left(x^2+y^2+10\right)⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)
Ta có \(xy⋮4\)
Do đó \(\left(x^2+y^2+10\right)⋮4\).
Mà \(x^2⋮4,y^2⋮4\) nên \(10⋮4\) (Điều này vô lý)
=> Giả sử trên là sai. Vậy x,y là hai số lẻ.
Đặt \(d=ƯCLN\left(x,y\right)\)
Ta có: \(x=da,b=db\) với a, b, d \(\in N\)* và \(ƯCLN\left(a,b\right)=1\)
Có: \(\left(d^2a^2+d^2b^2+10\right)⋮\left(d^2ab\right)\Rightarrow\left(d^2a^2+d^2b^2+10\right)⋮d^2\Rightarrow10⋮d^2\Rightarrow d=1\)
Vậy \(ƯCLN\left(x,y\right)=1\)
b. Theo đề suy ra \(kxy=x^2+y^2+10\)
Vì x,y là số lẻ nên \(\left(x+1\right)\left(x-1\right)⋮4;\left(y+1\right)\left(y-1\right)⋮4\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x^2-1\right)⋮4\\\left(y^2-1\right)⋮4\end{matrix}\right.\)
Có: \(x^2+y^2+10=x^2-1+y^2-1+12\) chia hết cho 4 nên \(kxy⋮4\)
Mà ƯCLN \(\left(xy,4\right)=1\Rightarrow k⋮4\)
Giả sử trong 2 số x,y có một số chia hết cho 3; vai trò của x, y là như nhau, không mất tính tổng quát giả sử \(x⋮3\) . Ta có \(\left(xy\right)⋮3\)
Mà \(\left(x^2+y^2+10\right)⋮\left(xy\right)\)
Nên \(\left(x^2+y^2+10\right)⋮3\) \(\Rightarrow\left(y^2+10\right)⋮3\Rightarrow\left(y^2+1\right)⋮3\Rightarrow\) \(y^2\) chia cho 3 dư 2 (Điều này vô lý)
=> Giả sử trên là sai. Vậy x,y là hai số không chia hết cho 3.
\(\RightarrowƯCLN\left(xy,3\right)=1\), \(x^2\) và \(y^2\) chia cho 3 dư 1.
Do đó \(\left(x^2+y^2+10\right)⋮3\) nên \(kxy⋮3\) mà \(ƯCLN\left(xy,3\right)=1\Rightarrow k⋮3,k⋮4\)
\(ƯCLN\left(3,4\right)=1.3.4=12\Rightarrow k⋮12\)
Mà \(k\in N\)* nên \(k\ge12\)
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8
Bài này dễ mà bn
Ta có: \(\hept{\begin{cases}m^2+2⋮n\\n^2+2⋮m\end{cases}}\Rightarrow\left(m^2+2\right)\left(n^2+2\right)⋮mn\Rightarrow m^2n^2+2\left(m^2+n^2+2\right)⋮mn\)
Dễ có \(m^2n^2⋮mn\)nên \(2\left(m^2+n^2+2\right)⋮mn\)
Mà m,n lẻ nên mn lẻ hay \(\left(mn,2\right)=1\)suy ra \(m^2+n^2+2⋮mn\)(*)
Ta có đánh giá rằng số chính phương lẻ thì chia 4 dư 1 (Thật vậy xét các trường hợp 4k + 1 và 4k + 3)
\(\Rightarrow\)m2, n2 chia 4 dư 1 \(\Rightarrow m^2+n^2+2⋮4\)(**)
Từ (*) và (**) suy ra \(m^2+n^2+2⋮4mn\)(Do \(\left(mn,4\right)=1\))