K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

giải giùm ik gấp lăm

a: \(M=\left[\dfrac{x^2-2x+1}{x^2+x+1}+\dfrac{2x^2-4x-1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right]\cdot\dfrac{x^2+1}{2}\)

\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)

\(=\dfrac{x^2+1}{2}\)

 

30 tháng 11 2018

ĐKXĐ : \(x\ne\left\{1;0\right\}\)

a) \(P=\left(\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right):\dfrac{2x}{x^3+x}\)

\(P=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}-\dfrac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x\left(x^2+1\right)}{2x}\)

\(P=\left(\dfrac{\left(x-1\right)\left(x-1\right)^2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)

\(P=\left(\dfrac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)

\(P=\left(\dfrac{x^3-3x^2+3x-1-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)

\(P=\left(\dfrac{x^3-1}{x^3-1}\right)\cdot\dfrac{x^2+1}{2}\)

\(P=1\cdot\dfrac{x^2+1}{2}\)

\(P=\dfrac{x^2+1}{2}\)

b) Vì \(x^2\ge0\forall x\)

\(\Rightarrow P\ge\dfrac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Mà ĐKXĐ \(x\ne0\)

=> ... đến đây ko biết làm :v haha

AI BIẾT LÀM HỘ ĐI

Cái này mk chưa học nên cx chưa rõ cách làm chính xác mong bạn thông cảm :)

Đề sai rồi bạn

1 tháng 1 2019

a.

ĐKXĐ: \(x\ne2\)

b.

\(P=\left(\dfrac{2x}{x-2}+\dfrac{x}{2-x}\right):\dfrac{x^2+1}{x-2}\)

\(=\left(\dfrac{2x}{x-2}-\dfrac{x}{x-2}\right)\cdot\dfrac{x-2}{x^2+1}\)

\(=\dfrac{x}{x-2}\cdot\dfrac{x-2}{x^2+1}=\dfrac{x}{x^2+1}\)

c.

\(x=-1\Rightarrow P=-\dfrac{1}{\left(-1\right)^2+1}=-\dfrac{1}{2}\)

d.

\(P=\dfrac{x}{x^2+1}\cdot\dfrac{x^2+1}{x}-\dfrac{1}{P}\ge1-\dfrac{1}{P}\)

\(\Rightarrow\dfrac{P^2+1}{P}\ge1\)

\(\Rightarrow P^2+1\ge P\) \(\Rightarrow P\left(P-1\right)\ge1\)

\(\Rightarrow P\ge2\)

Dấu "=" khi x = ...................

15 tháng 12 2022

Bài 2:

a: \(M=\dfrac{3x+1-2x-2}{\left(3x-1\right)\left(3x+1\right)}:\dfrac{3x+1-3x}{x\left(3x+1\right)}\)

\(=\dfrac{x-1}{\left(3x-1\right)\left(3x+1\right)}\cdot\dfrac{x\left(3x+1\right)}{1}=\dfrac{x\left(x-1\right)}{3x-1}\)

b: Để M=0 thì x(x-1)=0

=>x=1(nhận) hoặc x=0(loại)

c: \(P=M\cdot\left(3x-1\right)=x\left(x-1\right)=x^2-x+\dfrac{1}{4}-\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}>=-\dfrac{1}{4}\)

Dấu = xảy ra khi x=1/2

23 tháng 6 2018

a) \(\dfrac{x}{x-3}-\dfrac{x^2+3x}{2x+3}\left(\dfrac{x+3}{x^2-3x}-\dfrac{x}{x^2-9}\right)\)

ĐKXĐ:\(\left\{{}\begin{matrix}x-3\ne0\\2x +3\ne0\\x^2-3x\ne0\\x^2-9\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-\dfrac{3}{2}\\x\ne0\\x\ne\pm3\end{matrix}\right.\)

\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}\left(\dfrac{x+3}{x\left(x-3\right)}-\dfrac{x}{\left(x-3\right)\left(x+3\right)}\right)\)

\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}.\dfrac{\left(x+3\right)^2-x^2}{x\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}.\dfrac{\left(x+3-x\right)\left(x+3+x\right)}{x\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right).3\left(2x+3\right)}{\left(2x+3\right)x\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x}{x-3}-\dfrac{3}{x-3}\)

\(=\dfrac{x-3}{x-3}\)

=1

\(\Rightarrow\) ĐPCM

ĐKXĐ: \(x\notin\left\{-1;-\dfrac{1}{2}\right\}\)

a) Ta có: \(P=\left(\dfrac{2x}{x^3+x^2+x+1}+\dfrac{1}{x+1}\right):\left(1+\dfrac{x}{x+1}\right)\)

\(=\left(\dfrac{2x}{\left(x+1\right)\left(x^2+1\right)}+\dfrac{x^2+1}{\left(x^2+1\right)\left(x+1\right)}\right):\left(\dfrac{x+1+x}{x+1}\right)\)

\(=\dfrac{x^2+2x+1}{\left(x+1\right)\left(x^2+1\right)}:\dfrac{2x+1}{x+1}\)

\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x+1}{2x+1}\)

\(=\dfrac{x^2+2x+1}{\left(2x+1\right)\left(x^2+1\right)}\)

b) Vì \(x=\dfrac{1}{4}\) thỏa mãn ĐKXĐ

nên Thay \(x=\dfrac{1}{4}\) vào biểu thức \(P=\dfrac{x^2+2x+1}{\left(2x+1\right)\left(x^2+1\right)}\), ta được:

\(P=\left[\left(\dfrac{1}{4}\right)^2+2\cdot\dfrac{1}{4}+1\right]:\left[\left(2\cdot\dfrac{1}{4}+1\right)\left(\dfrac{1}{16}+1\right)\right]\)

\(=\left(\dfrac{1}{16}+\dfrac{1}{2}+1\right):\left[\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{16}+1\right)\right]\)

\(=\dfrac{25}{16}:\dfrac{51}{32}=\dfrac{25}{16}\cdot\dfrac{32}{51}=\dfrac{50}{51}\)

Vậy: Khi \(x=\dfrac{1}{4}\) thì \(P=\dfrac{50}{51}\)

a: \(M=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\left(\dfrac{x\left(x-2\right)^2+4x^2}{2\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x^3-4x^2+4x+4x^2}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)

b: Thay x=1/2 vào M, ta được:

\(M=\left(\dfrac{1}{2}+1\right):\left(2\cdot\dfrac{1}{2}\right)=\dfrac{3}{2}\)

2 tháng 5 2018

khocroikhocroikhocroihiha

2 tháng 5 2018

Câu 1 :

a) Rút gọn P :

\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)

\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)

\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)